Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Cubo (Temuco)
On-line version ISSN 0719-0646
Cubo vol.24 no.2 Temuco Aug. 2022
http://dx.doi.org/10.56754/0719-0646.2402.0263
Articles
Perfect matchings in inhomogeneous random bipartite graphs in random environment
1Department of Mathematics, The Pennsylvania State University, USA. bochi@psu.edu
2Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile. giommi@mat.uc.cl
3Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile. mponcea@mat.uc.cl
In this note we study inhomogeneous random bipartite graphs in random environment. These graphs can be thought of as an extension of the classical Erdös-Rényi random bi-partite graphs in a random environment. We show that the expected number of perfect matchings obeys a precise asymptotic.
Keywords and Phrases: Perfect matchings; large permanents; random graphs
En esta nota estudiamos grafos aleatorios bipartitos inhomogéneos en un ambiente aleatorio. Estos grafos pueden ser pensados como una extensión de los grafos bipartitos aleatorios clásicos de Erdös-Rényi en un ambiente aleatorio. Mostramos que el número esperado de pareos obedece un comportamiento asintótico preciso.
Acknowledgments
The authors were partially supported by CONICYT PIA ACT172001. J.B. was partially supported by Proyecto Fondecyt 1180371. G.I. was partially supported by Fondecyt 1190194. M.P. was partially supported by Fondecyt 1180922.
References
[1] M. Abért, P. Csikvári, P. Frenkel and G. Kun, “Matchings in Benjamini-Schramm convergent graph sequences”, Trans. Amer. Math. Soc., vol. 368, no. 6, pp. 4197-4218, 2016. [ Links ]
[2] J. Bochi, G. Iommi and M. Ponce, “The scaling mean and a law of large permanents”, Adv. Math., vol. 292, pp. 374-409, 2016. [ Links ]
[3] L. V. Bogachev, “Random walks in random environments”, in Encyclopedia of Mathematical Physics, vol. 4, pp. 353-371. Elsevier: Oxford, 2006. [ Links ]
[4] B. Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press: Cambridge, 2001. [ Links ]
[5] B. Bollobás and B. D. McKay, “The number of matchings in random regular graphs and bipartite graphs”, J. Combin. Theory Ser. B, vol. 41, no. 1, pp. 80-91, 1989. [ Links ]
[6] B. Bollobás, S. Janson and O. Riordan, “The phase transition in inhomogeneous random graphs”, Random Structures Algorithms, vol. 31, no. 1, pp. 3-122, 2007. [ Links ]
[7] P. Erdös and A. Rényi, ‘On random graphs. I”, Publ. Math. Debrecen, vol. 6, pp. 290-297, 1959. [ Links ]
[8] P. Erdös and A. Rényi, “On random matrices”, Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 8, pp. 455-461, 1964. [ Links ]
[9] G. Halász and G. J. Székely, “On the elementary symmetric polynomials of independent random variables”, Acta Math. Acad. Sci. Hungar., vol. 28, no. 3-4, pp. 397-400, 1976. [ Links ]
[10] P. Holland, K. Laskey and S. Leinhardt, “Stochastic blockmodels: first steps”, Social Networks, vol. 5, no. 2, pp. 109-137, 1983. [ Links ]
[11] P. E. O’Neil, “Asymptotics in random (0, 1)-matrices”, Proc. Amer. Math. Soc., vol. 25, pp. 290-296, 1970. [ Links ]
[12] F. Solomon, “Random walks in a random environment”, Ann. Probability, vol. 3, no. 1, pp. 1-31, 1975 [ Links ]
Accepted: April 13, 2022; Received: October 15, 2021