SciELO - Scientific Electronic Library Online

vol.23 número3Existence and uniqueness of solutions to discrete,third-order three-point boundary value problemsOn the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.23 no.3 Temuco dic. 2021 


Some integral inequalities related to Wirtinger’s result for p-norms

1 Mathematics, College of Engineering & Science, Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia. DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.


In this paper we establish several natural consequences of some Wirtinger type integral inequalities for p-norms. Applications related to the trapezoid unweighted inequalities, of Grüss’ type inequalities and reverses of Jensen’s inequality are also provided.

Keywords and Phrases: Wirtinger’s inequality; trapezoid inequality; Grüss’ inequality; Jensen’s inequality


En este artículo establecemos varias consecuencias naturales de algunas desigualdades integrales de tipo Wirtinger para p-normas. También se entregan aplicaciones relacionadas a desigualdades trapezoidales sin peso, desigualdades de tipo Grüss y reversos de la desigualdad de Jensen.

Texto completo disponible sólo en PDF

Full text available only in PDF format


The author would like to thank the anonymous referees for valuable suggestions that have been implemented in the final version of the manuscript.


[1] M. W. Alomari, “On Beesack-Wirtinger Inequality”, Results Math., vol. 73, no. 2, pp. 1213-1225, 2017. [ Links ]

[2] P. R. Beesack, “Extensions of Wirtinger’s inequality”, Trans. R. Soc. Can., vol. 53, pp. 21-30, 1959. [ Links ]

[3] P. L. Chebyshev, “Sur les expressions approximatives des intégrales dèfinis par les autres prises entre les même limites”, Proc. Math. Soc. Charkov, vol. 2, pp. 93-98, 1882. [ Links ]

[4] J. B. Diaz and F. T. Metcalf , “Variations on Wirtinger’s inequality”, in Inequalities, New York: Academic Press, 1967, pp. 79-103. [ Links ]

[5] P. Drábek and R. Manásevich, “On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian”, Differential Integral Equations, vol. 12, no. 6, pp. 773-788, 1999. [ Links ]

[6] S. S. Dragomir, “A Grüss type inequality for isotonic linear functionals and applications”, Demonstratio Math., vol. 36, no. 3, pp. 551-562, 2003. [ Links ]

[7] S. S. Dragomir, “Some integral inequalities related to Wirtinger’s result”, Preprint, RGMIA Res. Rep. Coll., vol. 21, art. 60, 2018. [ Links ]

[8] R. Giova, “An estimate for the best constant in the Lp-Wirtinger inequality with weights”, J. Func. Spaces Appl., vol. 6, no. 1, pp. 1-16, 2008. [ Links ]

[9] R. Giova and T. Ricciardi, “A sharp weighted Wirtinger inequality and some related functional spaces”, Bull. Belg. Math. Soc. Simon Stevin, vol. 17, no. 2, pp. 209-218, 2010. [ Links ]

[10] G. Grüss, “Über das Maximum des absoluten Betrages von ”, Math. Z., vol. 39, no. 1, pp. 215-226, 1935. [ Links ]

[11] J. Jaroš, “On an integral inequality of the Wirtinger type”, Appl. Math. Letters, vol. 24, no. 8, pp. 1389-1392, 2011. [ Links ]

[12] C. F. Lee, C. C. Yeh, C. H. Hong and R. P. Agarwal, “Lyapunov and Wirtinger inequalities”, Appl. Math. Lett., vol. 17, no. 7, pp. 847-853, 2004. [ Links ]

[13] A. Lupaş, “The best constant in an integral inequality”, Mathematica (Cluj), vol. 15, no. 38,pp. 219-222, 1973. [ Links ]

[14] A. M. Ostrowski, “On an integral inequality”, Aequationes Math., vol. 4, pp. 358-373, 1970. [ Links ]

[15] T. Ricciardi, “A sharp weighted Wirtinger inequality”, Boll. Unione Mat. Ital. Sez. B Artic.Ric. Mat. (8), vol. 8, no. 1, pp. 259-267, 2005. [ Links ]

[16] C. A. Swanson, “Wirtinger’s inequality”, SIAM J. Math. Anal., vol. 9, no. 3, pp. 484-491, 1978. [ Links ]

[17] S.-E. Takahasi, T. Miura and T. Hayata, “On Wirtinger’s inequality and its elementary proof”, Math. Inequal. Appl., vol. 10, no. 2, pp. 311-319, 2007. [ Links ]

[18] S. Takeuchi, “Generalized elliptic functions and their application to a nonlinear eigenvalue problem with p-Laplacian”, J. Math. Anal. Appl., vol. 385 , no. 1, pp. 24-35, 2012. [ Links ]

Accepted: October 05, 2021; Received: May 02, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License