SciELO - Scientific Electronic Library Online

 
vol.22 issue1η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.22 no.1 Temuco Apr. 2020

http://dx.doi.org/10.4067/S0719-06462020000100001 

Articles

Bounds for the Generalized (Φ, f)-Mean Difference

Silvestru Sever Dragomir1  2 

1 Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. sever.dragomir@vu.edu.au

2 School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

Abstract

In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.

Keywords and Phrases: Gini mean difference; Mean deviation; Lebesgue integral; Expectation; Jensen’s integral inequality

Resumen

En este artículo establecemos algunas cotas para la (Φ, f)-diferencia media introducida en el contexto general de espacios medibles e integral de Lebesgue, que es una generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente utilizada por economistas y sociólogos para medir desigualdad económica.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

Acknowledgement.

The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

Referencias

[1] M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646. [ Links ]

[2] M. Alomari andM. Darus , Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975. [ Links ]

[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20. [ Links ]

[4] W. W. Breckner and G. Orbán, Continuity Properties of Rationally s-Convex Mappings with vValues in an Ordered Topological Linear Space. Universitatea ”Babeş-Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp. [ Links ]

[5] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Sonin identity, Comp. Math. Modelling, 50 (2005), 599-609. [ Links ]

[6] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference via the Korkine identity, J. Appl. Math. & Computing, 22 (2006), no. 3, 305-315. [ Links ]

[7] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of an empirical distribution. Appl. Math. Lett. 19 (2006), no. 3, 283-293. [ Links ]

[8] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I), Appl. Math. Lett. 20 (2007), no. 7, 782-789. [ Links ]

[9] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II), Comput. Math. Appl. 52 (2006), no. 10-11, 1555-1562. [ Links ]

[10] P. Cerone andS. S. Dragomir , A survey on bounds for the Gini mean difference. Advances in inequalities from probability theory and statistics, 81-111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008. [ Links ]

[11] P. Cerone andS. S. Dragomir , Bounds for the r-weighted Gini mean difference of an empirical distribution. Math. Comput. Modelling 49 (2009), no. 1-2, 180-188. [ Links ]

[12] X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Article. 29. [ Links ]

[13] H. A. David, Gini’s mean difference rediscovered, Biometrika, 55 (1968), 573. [ Links ]

[14] S. S. Dragomir , Weighted f-Gini mean difference for convex and symmetric functions in linear spaces. Comput. Math. Appl. 60 (2010), no. 3, 734-743. [ Links ]

[15] S. S. Dragomir , Bounds in terms of Gâteaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420-434. [ Links ]

[16] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696. [ Links ]

[17] S. S. Dragomir andS. Fitzpatrick , The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49. [ Links ]

[18] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385. [ Links ]

[19] S. S. Dragomir , J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341. [ Links ]

[20] J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316. [ Links ]

[21] C. Gini, Variabilità e Metabilità, contributo allo studia della distribuzioni e relationi statistiche, Studi Economica-Gicenitrici dell’ Univ. di Coglani, 3 (1912), art 2, 1-158. [ Links ]

[22] G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103-221. [ Links ]

[23] G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron , XLII(3-4) (1984), 25-40. [ Links ]

[24] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press. [ Links ]

[25] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111. [ Links ]

[26] M. Kendal and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin & Comp. Ltd., London, 1977. [ Links ]

[27] U. S. Kirmaci , M. Klaričić Bakula , M. E Ozdemir and J. Pečarić , Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35. [ Links ]

[28] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104. [ Links ]

[29] E. Set, M. E. Ozdemir and M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License