Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Cubo (Temuco)
On-line version ISSN 0719-0646
Cubo vol.22 no.1 Temuco Apr. 2020
http://dx.doi.org/10.4067/S0719-06462020000100001
Articles
Bounds for the Generalized (Φ, f)-Mean Difference
1 Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. sever.dragomir@vu.edu.au
2 School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.
Keywords and Phrases: Gini mean difference; Mean deviation; Lebesgue integral; Expectation; Jensen’s integral inequality
En este artículo establecemos algunas cotas para la (Φ, f)-diferencia media introducida en el contexto general de espacios medibles e integral de Lebesgue, que es una generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente utilizada por economistas y sociólogos para medir desigualdad económica.
Acknowledgement.
The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.
Referencias
[1] M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646. [ Links ]
[2] M. Alomari andM. Darus , Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975. [ Links ]
[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20. [ Links ]
[4] W. W. Breckner and G. Orbán, Continuity Properties of Rationally s-Convex Mappings with vValues in an Ordered Topological Linear Space. Universitatea ”Babeş-Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp. [ Links ]
[5] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Sonin identity, Comp. Math. Modelling, 50 (2005), 599-609. [ Links ]
[6] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference via the Korkine identity, J. Appl. Math. & Computing, 22 (2006), no. 3, 305-315. [ Links ]
[7] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of an empirical distribution. Appl. Math. Lett. 19 (2006), no. 3, 283-293. [ Links ]
[8] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I), Appl. Math. Lett. 20 (2007), no. 7, 782-789. [ Links ]
[9] P. Cerone andS. S. Dragomir , Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II), Comput. Math. Appl. 52 (2006), no. 10-11, 1555-1562. [ Links ]
[10] P. Cerone andS. S. Dragomir , A survey on bounds for the Gini mean difference. Advances in inequalities from probability theory and statistics, 81-111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008. [ Links ]
[11] P. Cerone andS. S. Dragomir , Bounds for the r-weighted Gini mean difference of an empirical distribution. Math. Comput. Modelling 49 (2009), no. 1-2, 180-188. [ Links ]
[12] X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Article. 29. [ Links ]
[13] H. A. David, Gini’s mean difference rediscovered, Biometrika, 55 (1968), 573. [ Links ]
[14] S. S. Dragomir , Weighted f-Gini mean difference for convex and symmetric functions in linear spaces. Comput. Math. Appl. 60 (2010), no. 3, 734-743. [ Links ]
[15] S. S. Dragomir , Bounds in terms of Gâteaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420-434. [ Links ]
[16] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696. [ Links ]
[17] S. S. Dragomir andS. Fitzpatrick , The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49. [ Links ]
[18] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385. [ Links ]
[19] S. S. Dragomir , J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341. [ Links ]
[20] J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316. [ Links ]
[21] C. Gini, Variabilità e Metabilità, contributo allo studia della distribuzioni e relationi statistiche, Studi Economica-Gicenitrici dell’ Univ. di Coglani, 3 (1912), art 2, 1-158. [ Links ]
[22] G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103-221. [ Links ]
[23] G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron , XLII(3-4) (1984), 25-40. [ Links ]
[24] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press. [ Links ]
[25] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111. [ Links ]
[26] M. Kendal and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin & Comp. Ltd., London, 1977. [ Links ]
[27] U. S. Kirmaci , M. Klaričić Bakula , M. E Ozdemir and J. Pečarić , Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35. [ Links ]
[28] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104. [ Links ]
[29] E. Set, M. E. Ozdemir and M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82. [ Links ]