SciELO - Scientific Electronic Library Online

vol.21 issue3The K-theory ranks for crossed products of C∗-algebras bythe group of integersOstrowski-Sugeno fuzzy inequalities author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.21 no.3 Temuco Dec. 2019 


Naturality and definability II

Wilfrid Hodges1 

Saharon Shelah2 

1Herons Brook, Sticklepath, Devon EX20 2PY, England.

2Institute of Mathematics, Hebrew University, Jerusalem, Israel.


We regard an algebraic construction as a set-theoretically defined map taking structures A to structures B which have A as a distinguished part, in such a way that any isomorphism from A to A′ lifts to an isomorphism from B to B′. In general the construction defines B up to isomorphism over A. A construction is uniformisable if the set-theoretic definition can be given in a form such that for each A the corresponding B is determined uniquely. A construction is natural if restriction from B to its part A always determines a map from the automorphism group of B to that of A which is a split surjective group homomorphism. We prove that there is no transitive model of ZFC (Zermelo-Fraenkel set theory with Choice) in which the uniformisable constructions are exactly the natural ones. We construct a transitive model of ZFC in which every uniformisable construction (with a restriction on the parameters in the formulas defining the construction) is ‘weakly’ natural. Corollaries are that the construction of algebraic closures of fields and the construction of divisible hulls of abelian groups have no uniformisations definable in ZFC without parameters.

Keywords and Phrases: Naturality; uniformisability; transitive models; ZFC set theory


Consideramos una construcción algebraica como una aplicación conjuntista tomando estructuras A a estructuras B que tienen a A como parte distinguida, de manera tal que cualquier isomorfismo de A a A′ se levanta a un isomorfismo de B a B′. En general la construcción define B salvo isomorfismo sobre A. Una construcción es uniformizable si la definición conjuntista puede darse de forma tal que para cada A el B correspondiente está determinado únicamente. Una construcción es natural si la restricción de B a su parte A siempre determina una aplicación desde el grupo de automorfismos de B al correspondiente de A que es un homomorfismo de grupos sobreyectivo que escinde. Probamos que no existe un modelo transitivo de ZFC (teoría de conjuntos de Zermelo-Fraenkel con Axioma de Elección) en el cual las construcciones uniformizables sean exactamente las naturales. Construimos un modelo transitivo de ZFC en el cual toda construcción uniformizable (con una restricción en los parámetros de las fórmulas definiendo la construcción) es ‘débilmente’ natural. Como corolarios obtenemos que la construcción de clausuras algebraicas de cuerpos y la construcción de cápsulas divisibles de grupos abelianos no tienen uniformizaciones definibles en ZFC sin parámetros.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


[1] JIŘÍ ADÁMEK, HORST HERRLICH, JIŘÍ ROSICKÝ and WALTER THOLEN, ‘Injective hulls are not natural’, Algebra Universalis 48 (2002) 379-388. [ Links ]

[2] B. A. DAVEY and H. A. PRIESTLEY, Introduction to Lattices and Order, Cambridge University Press, Cambridge 1990. [ Links ]

[3] H. FRIEDMAN, ‘On the naturalness of definable operations’, Houston J. Math. 5 (1979) 325-330. [ Links ]

[4] W. HODGES, ‘On the effectivity of some field constructions’, Proc. London Math. Soc. (3) 32 (1976) 133-162. [ Links ]

[5] W. HODGES , ’Definability and automorphism groups’, in Proceedings of International Congress in Logic, Methodology and Philosophy of Science, Oviedo 2003, ed. Petr Hájek et al., King’s College Publications, London 2005, pp. 107-120; ISBN 1-904987-21-4. [ Links ]

[6] W. HODGES and S. SHELAH, ‘Naturality and definability I’, J. London Math. Soc. 33 (1986) 1-12. [ Links ]

[7] T. JECH, Set theory (Academic Press, New York, 1978). [ Links ]

[8] G.MELLES, ‘Classification theory and generalized recursive functions’, D.Phil. dissertation, University of California at Irvine, 1989. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License