SciELO - Scientific Electronic Library Online

 
vol.20 issue3Ball comparison between Jarratt’s and other fourth order method for solving equations author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.20 no.3 Temuco Oct. 2018

http://dx.doi.org/10.4067/S0719-06462018000300081 

Articles

The basic ergodic theorems, yet again

Jairo Bochi1 

1Pontificia Universidad Católica de Chile, Facultad de Matemáticas, jairo.bochi@mat.uc.cl

Abstract

A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen. In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.

Keywords and Phrases: Maximal ergodic theorem; Birkhoff’s ergodic theorem; Rokhlin lemma; Kingman’s subadditive ergodic theorem.

Resumen

Se presenta una generalización del Lema de la Torre de Rokhlin. El Teorema Ergódico Maximal se obtiene como corolario. También usamos el lema de Rokhlin generalizado, esta vez combinado con una versión subaditiva de la fórmula de Kac, para deducir una versión subaditiva del Teorema Ergódico Maximal obtenida por Silva y Thieullen. Tanto en el caso aditivo como en el subaditivo, estos teoremas maximales inmediatamente implican que puntos “pesados” tienen probabilidad positiva. Usamos esta pesadez para probar los teoremas ergódicos puntuales de Birkhoff y Kingman.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] Avila, A.; Bochi, J. - On the subadditive ergodic theorem. Manuscript, 2009. www.mat.uc.cl/~jairo.bochi/docs/kingbirk.pdfLinks ]

[2] Birkhoff, G. D. - Proof of the ergodic theorem. Proc. Nat. Acad. Sci. USA, 17 (1931), 656-660. [ Links ]

[3] Heinemann, S.-M.; Schmitt, O. - Rokhlin’s lemma for non-invertible maps. Dynam. Systems Appl. 10 (2001), no. 2, 201-213. [ Links ]

[4] Jones, R. L. - New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem. Proc. Amer. Math. Soc. 87 (1983), no. 4, 681-684. [ Links ]

[5] Karlsson, A. - A proof of the subadditive ergodic theorem. Groups, graphs and random walks, 343-354, London Math. Soc. Lecture Note Ser., 436, Cambridge Univ. Press, Cambridge, 2017. [ Links ]

[6] Karlsson, A.; Margulis, G. - A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208 (1999), no. 1, 107-123. [ Links ]

[7] Katok, A.; Hasselblatt, B. - Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge Univ. Press, Cambridge , 1995. [ Links ]

[8] Katznelson, Y.; Weiss, B. - A simple proof of some ergodic theorems. Israel J. Math. 42 (1982), no. 4, 291-296. [ Links ]

[9] Keane, M.; Petersen, K. - Easy and nearly simultaneous proofs of the ergodic theorem and maximal ergodic theorem. Dynamics & stochastics, 248-251. IMS Lecture Notes Monogr. Ser., 48. Inst. Math. Statist., Beachwood, OH, 2006. [ Links ]

[10] Kingman, J. F. C. - The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B, 30 (1968), 499-510. [ Links ]

[11] Knill, O. - The upper Lyapunov exponent of SL(2, R) cocycles: discontinuity and the problem of positivity. Lyapunov exponents (Oberwolfach, 1990), 86-97, Lecture Notes in Math., 1486, Springer, Berlin, 1991. [ Links ]

[12] Kornfeld, I. - Some old and new Rokhlin towers. Chapel Hill Ergodic Theory Workshops, 145-169, Contemp. Math., 356, Amer. Math. Soc., Providence, RI, 2004. [ Links ]

[13] Krengel, U. - Ergodic theorems. De Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co., Berlin, 1985. [ Links ]

[14] Lessa, P. - Teoremas ergdicos en espacios hiperblicos. Master’s thesis, Universidad de la República, Montevideo (2009). www.cmat.edu.uy/~lessa/masters.htmlLinks ]

[15] Morris, I. D. - Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc. 107 (2013), no. 1, 121-150. [ Links ]

[16] Petersen, K. - Ergodic theory. Corrected reprint of the 1983 original. Cambridge Studies in Advanced Mathematics, 2. Cambridge Univ. Press, Cambridge , 1989. [ Links ]

[17] Quas, A. - mathoverflow.net/q/279635Links ]

[18] Ralston, D. - Heaviness: an extension of a lemma of Y. Peres. Houston J. Math. 35 (2009), no. 4, 1131-1141. [ Links ]

[19] Rokhlin, V. - A “general” measure-preserving transformation is not mixing. (Russian) Doklady Akad. Nauk SSSR 60, (1948), 349-351. [ Links ]

[20] Silva, C. E. ; Thieullen, P. - The subadditive ergodic theorem and recurrence properties of Markovian transformations. J. Math. Anal. Appl. 154 (1991), no. 1, 83-99. [ Links ]

[21] Steele, J. M. - Explaining a mysterious maximal inequality - and a path to the law of large numbers. Amer. Math. Monthly 122 (2015), no. 5, 490-494. [ Links ]

[22] Weiss, B. - On the work of V. A. Rokhlin in ergodic theory. Ergodic Theory Dynam. Systems 9 (1989), no. 4, 619-627. [ Links ]

[23] Wojtkowski, M. - Invariant families of cones and Lyapunov exponents. Ergodic Theory Dynam. Systems 5 (1985), no. 1, 145-161. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License