SciELO - Scientific Electronic Library Online

 
vol.19 issue3Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponentsTotally Degenerate Extended Kleinian Groups author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.19 no.3 Temuco Dec. 2017

http://dx.doi.org/10.4067/S0719-06462017000300057 

Articles

Existence of solutions for discrete boundary value problems with second order dependence on parameters

Aboudramane Guiro1 

Idrissa Ibrango2 

1Laboratoire de Mathmatiques et Informatique (LAMI), Unit de Formation et de Recherche en Sciences et Techniques, Universit Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Bobo Dioulasso, Burkina Faso. E-mail: abouguiro@yahoo.fr

2Laboratoire de Mathmatiques et Informatique (LAMI), Unit de Formation et de Recherche en Sciences et Techniques, Universit Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Bobo Dioulasso, Burkina Faso. E-mail: ibrango2006@yahoo.fr

Abstract

We prove the existence of non trivial solution for discrete nonlinear problems of Kirchhoff type. The proof of the main result is based on a mountain pass lemma.

Keywords and Phrases: Kleinian Groups; NEC groups

Resumen

Demostramos la existencia de soluciones no triviales para problemas discretos no lineales de tipo Kirchhoff. La demostración del resultado principal está basado en un lema del paso de la montaña.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] R. P. Agarwal, K. Perera and D. O’Regan; Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal. 58 (2004), 69-73. [ Links ]

[2] A. Cabada, A. Iannizzoto and S. Tersian; Multiple solutions for discrete boundary value problems. J. Math Anal Appl. 356 (2009), 418-428. [ Links ]

[3] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661. [ Links ]

[4] P. Candito and G. D’Agui; Three solutions for a discrete nonlinear Neumann problem involving p-Laplacian, Adv Differ Equ 11 (2010). Article ID 862016 [ Links ]

[5] M. Galewski and R. Wieteska; Existence and multiplicity of positive solutions for discrete anisotropic equations, Turk. J. Math. 38 (2014), 297-310. [ Links ]

[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011). [ Links ]

[7] L. Jiang and Z. Zhou; Three solutions to Dirichlet boundary value problems for p-Laplacian Difference equations, Adv Differ Equ 10 (2008). Article ID 345916. [ Links ]

[8] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems. J Differ Equ Appl. 16(2) (2010), 1-11. [ Links ]

[9] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567. [ Links ]

[10] J. Smejda and R. Wieteska; On the dependence on parameters for second order discrete boundary value problems with the p(k)-laplacian, Opuscula Math. 34 (2014), 851-870. [ Links ]

[11] M. Willem; Minimax Theorem, Birkhuser, 1996. [ Links ]

[12] J. Yu and Z. Guo; On boundary value problems for a discrete generalized Emden-Fowler equation. J Math Anal Appl. 231 (2006), 18-31. [ Links ]

[13] G. Zhang and S. Liu; On a class of semipositone discrete boundary value problem. J Math Anal Appl. 325 (2007), 175-182. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License