Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Cubo (Temuco)
On-line version ISSN 0719-0646
Cubo vol.19 no.1 Temuco 2017
http://dx.doi.org/10.4067/S0719-06462017000100004
Inequalities for Chebyshev Functional in Banach Algebras
S. S. Dragomir1, M. V. Boldea2 and M. Megan3
1 Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. School of Computational & Applied Mathematics, University of the Witwatersrand, . Private Bag 3, Johannesburg 2050, South Africa.
2 Mathematics and Statistics, Banat University of Agricultural Sciences and Veterinary Medicine TimiÅoara, 119 Calea Aradului, 300645, TimiÅoara, România
3 Department of Mathematics, West University of TimiÅoara, B-dul V. Pârvan 4, 1900-TimiÅoara, România
sever.dragomir@vu.edu.au, http://rgmia.org/dragomir
ABSTRACT
By utilizing some identities for double sums, some new inequalities for the Chebyshev functional in Banach algebras are given. Some examples for the exponential and resolvent functions on Banach algebras are also provided.
Keywords and Phrases: Banach algebras, Power series, Exponential function, Resolvent function, Norm inequalities.
2010 AMS Mathematics Subject Classification: 47A63; 47A99.
RESUMEN
Usando algunas identidades para sumas dobles, encontramos algunas nuevas desigualdades para el funcional de Chebyshev en álgebras de Banach. También entregamos algunos ejemplos para las funciones exponencial y resolvente en álgebras de Banach.
References
[1] G. A. Anastassiou, Grüss type inequalities for the Stieltjes integral. Nonlinear Funct. Anal. Appl. 12 (2007), no. 4, 583â593.
[2] M. Biernacki, Sur une inégalité entre les intégrales due à Tchebyscheff. Ann. Univ. Mariae Curie-Sklodowska (Poland), A5(1951), 23-29.
[3] M. V. Boldea, S. S. Dragomir and M. Megan, New bounds for Chebyshev functional for power series in Banach algebras via a Grüss-LupaÅ type inequality, PanAmerican Mathematical
Journal, 26(2016), 71 - 88.
[4] K. Boukerrioua, and A. Guezane-Lakoud, On generalization of Chebyshev type inequalities. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 55, 4 pp.
[5] P. L. ÄebyÅ¡ev, O približennyh vyraženijah odnih integralov Äerez drugie. SoobÅ¡Äenija i protokoly zasedaniÇ MatemmatiÄeskogo obÄestva pri Imperatorskom Harâkovskom Universitete No. 2, 93â98; Polnoe sobranie soÄineniÇ P. L. ÄebyÅ¡eva. MoskvaâLeningrad, 1948a, (1882), 128- 131.
[6] P.L. ÄebyÅ¡ev, Ob odnom rjade, dostavljajuÅ¡Äem predelânye veliÄiny integralov pri razloženii podintegralânoÇ funkcii na množeteli. Priloženi k 57 tomu Zapisok Imp. Akad. Nauk, No. 4;
Polnoe sobranie soÄineniÇı P. L. ÄebyÅ¡eva. MoskvaâLeningrad, 1948b, (1883),157-169.
[7] P. Cerone, On a Chebyshev-type functional and Grüss-like bounds. Math. Inequal. Appl. 9 (2006), no. 1, 87â102.
[8] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications. Tamkang J. Math. 38 (2007), no. 1, 37â49.
[9] P. Cerone and S. S. Dragomir, Chebychev functional bounds using Ostrowski seminorms. Southeast Asian Bull. Math. 28 (2004), no. 2, 219â228.
[10] P. Cerone and S. S. Dragomir, New bounds for the ÄebyÅ¡ev functional. Appl. Math. Lett. 18 (2005), no. 6, 603â611.
[11] S. S. Dragomir, Inequalities for the Chebyshev functional of two functions of selfadjoint operators in Hilbert spaces , Aust. J. Math. Anal. & Appl. 6(2009), Issue 1, Article 7, pp. 1-58.
[12] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality. Integral Transforms Spec. Funct. 20 (2009), no. 9-10,
757â767.
[13] S.S. Dragomir, A generalization of Grüssâ inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
[14] S.S. Dragomir, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., 31(4) (2000), 397-415.
[15] S. S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 4(2) (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280).
[16] S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 5(3) (2004), Article 76. (Online :http://jipam.vu.edu.au/article.php?sid=432).
[17] S.S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. & Applics., 1(1) (2004), Article 1. (Online: http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex).
[18] S. S. Dragomir, On the Chebyshevâs inequality for weighted means. Acta Math. Hungar. 104 (2004), no. 4, 345â355.
[19] S.S. Dragomir, On Bessel and Grüss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc., 69(2) (2004), 327-340.
[20] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p.
[21] S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73(1)(2006), 69-78.
[22] S. S. Dragomir, Operator Inequalities of the Jensen, Chebyshev and Grss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1.
[24] S. S. Dragomir, M. V. Boldea, C. BuÅe and Mihail Megan, Norm inequalities of Chebyshev type for power series in Banach algebras, J. Inequal. Appl., 2014, 2014:294.
[25] S. S. Dragomir and G.L. Booth, On a Grüss-LupaÅ type inequality and its applications for the estimation of p-moments of guessing mappings, Mathematical Communications, 5(2000), 117-126.
[26] S. S. Dragomir and I. Fedotov, An inequality of Grüssâ type for Riemann-Stieltjes integral and applications for special means, Tamkang J. of Math., 29(4)(1998), 286-292.
[27] S. S. Dragomir and B. Mond, Some mappings associated with ÄebyÅ¡evâs inequality for sequences of real numbers. Bull. Allahabad Math. Soc. 8/9 (1993/94), 37â55.
[28] S.S. Dragomir and J.E. PeÄariÄ, Refinements of some inequalities for isotonic linear functionals, LâAnal. Num. Théor de LâApprox. (Romania) 18(1989) (1), 61-65.
[29] S. S. Dragomir, J. PeÄariÄ and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. II. Proceedings of the Third Symposium of Mathematics and its Applications (TimiÅoara,
1989), 75â78, Rom. Acad., TimiÅoara, 1990. MR1266442 (94m:46033)
[30] S. S. Dragomir and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (TimiÅoara, 1987), 61â64, Res. Centre, Acad. SR Romania, TimiÅoara, 1988. MR1006000 (90k:46048).
[31] A. M. Fink, A treatise on Grüssâ inequality, Analytic and Geometric Inequalities, 93-113, Math. Appl. 478, Kluwer Academic Publ., 1999.
[32] T. Furuta, J. MiÄiÄ Hot, J. PeÄariÄ and Y. Seo, Mond-PeÄariÄ Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005. .
[33] G. Grüss, Über das Maximum des absoluten Betrages von 1 bâa /b a f(x)g(x)dx â1 (bâa)2 /b a f(x)dx /b a g(x)dx , Math. Z. , 39(1935), 215-226.
[34] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 1st Ed. and 2nd Ed. Cambridge University Press, (1934, 1952) Cambridge, England.
[35] Z. Liu, Refinement of an inequality of Gr¨uss type for Riemann-Stieltjes integral, Soochow J. Math., 30(4) (2004), 483-489.
[36] A. MatkoviÄ, J. PeÄariÄ and I. PeriÄ, A variant of Jensenâs inequality of Mercerâs type for operators with applications. Linear Algebra Appl. 418 (2006), no. 2-3, 551â564.
[37] D. S. MitrinoviÄ and J.E. PeÄariÄ, History, variations and generalizations of the Chebyshev inequality and question of some priorities. II. Rad Jugoslav. Akad. Znan. Umjet. No. 450
(1990), 139â156.
[38] D. S. MitrinoviÄ and J.E. PeÄariÄ, On an identity of D.Z. DjokoviÄ, Prilozi Mak. Akad.Nauk. Umj. (Skopje), 12(1)(1991), 21-22.
[39] D. S. MitrinoviÄ, J. E. PeÄariÄ and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[40] D. S. MitrinoviÄ and P.M. VasiÄ, History, variations and generalisations of the Chebyshev inequality and the question of some priorities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461â497 (1974), 1â30.
[41] J. PeÄariÄ, Remarks on Biernackiâs generalization of Chebyshevâs inequality. Ann. Univ. Mariae Curie-Sklodowska Sect. A 47 (1993), 116â122.
[42] J. E. PeÄariÄ and S.S. Dragomir, Some remarks on Chebyshevâs inequality, LâAnal. Num. Théor de LâApprox. 19 (1)(1990), 58-65.
[43] J. PeÄariÄ, J. MiÄiÄ and Y. Seo, Inequalities between operator means based on the Mond- PeÄariÄ method. Houston J. Math. 30 (2004), no. 1, 191â207
[44] C.-J. Zhao and W.-S. Cheung, On multivariate Gr¨uss inequalities. J. Inequal. Appl. 2008, Art. ID 249438, 8 pp.