SciELO - Scientific Electronic Library Online

vol.14 issue1New Aspects on Elementary Functions in the Context of Quaternionic AnalysisMajorization for certain classes of analytic functions defined by a new operator author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.14 no.1 Temuco  2012 

CUBO A Mathematical Journal Vol.14, N° 01, (111-117). March 2012


More on Approximate Operators

Philip J. Maher and Mohammad Sal Moslehian

Mathematics And Statistics Group, Middlesex University, Hendon Campus, The Burrough, London Nw4 4 Bt, United Kingdom. email:

Department Of Pure Mathematics, Centre Of Excellence In Analysis On Algebraic Structures, (CEAAS), Ferdowsi University Of Mashhad, P.O. Box 1159, Mashhad 91775, Iran. email:,


This note is a continuation of the work on (p; )-approximate operators studied by Mirzavaziri, Miura and Moslehian. [4]. We investigate approximate partial isometries and approximate generalized inverses. We also prove that if T is an invertible contraction satisfying . Then there exists a partial isometry V such that .

Keywords and Phrases: Hilbert space; approximation; unitary; partial isometry; polar decomposition; (p; )-approximate operator


Esta trabajo es una continuación del trabajo sobre operadores (p; )-aproximados estudiados por Mirzavaziri, Miura y Moslehian [4]. Investigamos isometrás parciales aproximadas e inversas aproximadas generalizadas. También probamos que si T es una contracción invertible que satisface entonces existe una isometría parcial V tal que

2010 AMS Mathematics Subject Classification: Primary 47A55; secondary 39B52.



[1] S. Aaronson, Algorithms for Boolean function query properties, SIAM J. Comput. 32 (2003), no. 5, 1140-1157.         [ Links ]

[2] P. R. Halmos, Positive approximants of operators, Indiana Univ. Math. J. 21, (1971/1972), pp. 951-960        [ Links ]

[3] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer{Verlag, New York, (1982).         [ Links ]

[4] M. Mirzavaziri, T. Miura and M. S. Moslehian, Approximate Unitaries in B(H). East J. Approx. 16 (2010), no. 2, 147-151.         [ Links ]

[5] T. Miura, A. Uchiyama, H. Oka, G. Hirasawa, S. E. Takahasi and N. Niwa, A perturbation of normal operators on a Hilbert space, Nonlinear Funct. Anal. Appl. 13 (2008), no. 2, 291-297.         [ Links ]

[6] G. J. Murphy, C*-algebras and Operator Theory, Academic press, Boston, 1990.         [ Links ]

[7] A. E. Taylor and D. C. Lay, Introduction to functional analysis, 2nd ed, John Wiley and Sons, New York, 1980.         [ Links ]

Received: June 2011. Revised: August 2011.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License