SciELO - Scientific Electronic Library Online

vol.13 issue3Applications and Lipschitz results of Approximation by Smooth Picard and Gauss-Weierstrass Type Singular Integrals author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.13 no.3 Temuco Oct. 2011 

CUBO A Mathematical Journal Vol.13, Nº03, (1-15). October 2011


On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible


Ioannis K. Argyros and Saïd Hilout

Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA. email:

Laboratoire de Mathematiques et Applications, Poitiers University, Bd. Pierre et Marie Curie, Teleport 2, B.P. 30179 86962 Futuroscope Chasseneuil Cedex, France email: said.hilout@math.univ—


We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods [1]—[12].

We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study

Keywords: Newton-type methods, Banach space, small divisors, non-invertible operators, semilocal convergence, Newton-Kantorovich-type hypothesis.

Mathematics Subject Classification: 65H10, 65G99, 65J15, 47H17, 49M15.


Ofrecemos un análisis de convergencia semilocal de los metodos de Newton type para aproximar una solución local unica de una ecuación no lineal en un entorno de un espacio de Banach. L derivada de Frechet del operador en cuestion no es necesariamente invertible continua. De esta manera ampliamos la aplicabilidad de los metodos del tipo Newton [1]-[12].

Tambien proporcionamos condiciones suficientes mas debiles de convergencia, y una cota de error más fina de las distancias involucradas que [1]-[12] (en el mismo coste computacional), en algunos casos interesantes. tambien presentamos ejemplos numericos.


[1] Argyros, I.K., The theory and application of abstract polynomial equations, St.Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A.

[2] Argyros, I.K., On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 169 (2004), 315-332.

[3] Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374-397.

[4] Argyros, I.K., Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007.

[5] Chandrasekhar, S., Radiative transfer, Dover Publ., New York, 1960.

[6] Nashed, M.Z., Chen, X., Convergence of Newton-like methods for singular operator equations using outer inverses, Numer. Math., 66 (1993), 235-257.

[7] Craven, B.D., Nashed, M Z., Generalized implicit function theorems when the derivative has no bounded inverse, Nonlinear Anal., 6 (1982), 375-387.

[8] Hald, O.H., On a Newton-Moser type method, Numer. Math., 23 (1975), 411-426.

[9] Jerome, J.W., An adaptive Newton algorithm based on numerical inversion: regularization as postconditioner., Numer. Math., 47 (1985), 123-138.

[10] Moret, I., On a general iterative scheme for Newton-type methods, Numer. Funct. Anal. Optim., 9 (1987-1988), 1115-1137.

[11] Potra, F.A., Sharp error bounds for a class of Newton-like methods, Libertas Mathematica, 5 (1985), 71-84.

[12] Yamamoto, T., A convergence theorem for Newton-like methods in Banach spaces, Numer. Math., 51 (1987), 545-557.

Received: September 2009.

Revised: October 2009.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License