Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Cubo (Temuco)
versión On-line ISSN 0719-0646
Cubo vol.13 no.1 Temuco 2011
http://dx.doi.org/10.4067/S0719-06462011000100005
CUBO A Mathematical Journal Vol.13, N° 01, (61–71). March 2011
CONTENTS
q- Fractional Inequalities
George A. Anastassiou
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A., email: ganastss@gmail.com
ABSTRACT
Here we give q-fractional Poincaré type, Sobolev type and Hilbert-Pachpatte type integral inequalities, involving q-fractional derivatives of functions. We give also their generalized versions.
Keywords: q-fractional derivative, q-fractional integral, q-fractional Poincaré inequality, q- fractional Sobolev inequality, q-fractio- nal Hilbert-Pachpatte inequality.
RESUMEN
Estudiamos el tipo q-fraccional Poincaré, el tipo Sobolev y el tipo integral de inecuaciones de Hilbert-Pachpatte, involucrando a q-fraccional derivados de funciones. Damos también las versiones generalizadas.
AMS Subject Classification: 26A24, 26A33, 26A39, 26D10, 26D15, 33D05, 33D60, 81P99.
References
[1] George Anastassiou, Fractional Differentiation Inequalities, Springer, N. York, Heidelberg, 2009.
[2] H. Gauchman, Integral inequalities in q-Calculus, Computers and Mathematics with Applications, 47 (2004), 281-300.
[3] P. Rajkovic, S. Marinkovic, M. Stankovic, Fractional integrals and derivatives in q-Calculus, Applicable Analysis and Discrete Mathematics, 1 (2007), 311-323.
[4] M. Stankovic, P. Rajkovic, S. Marinkovic, On q-fractional derivatives of Riemann Liouville and Caputo type, arXiv: 0909.0387 v1[math.CA] 2 Sept. 2009
Received: October 2009.
Revised: November 2009.