Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Cubo (Temuco)
versión On-line ISSN 0719-0646
Cubo vol.13 no.1 Temuco 2011
http://dx.doi.org/10.4067/S0719-06462011000100003
CUBO A Mathematical Journal Vol.13, N°01, (25–43). March 2011
CONTENTS
Evolutionary method of construction of solutions of polynomials and related generalized dynamics
Robert M. Yamaleev
Facultad de Estudios Superiores, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Campo 1, C.P.54740, México. Joint Institute for Nuclear Research, LIT, Dubna, Russia. email: iamaleev@servidor.unam.mx
ABSTRACT
Invariant theory as a study of properties of polynomials under translational transformations is developed. Class of polynomials with congruent set of eigenvalues is introduced. Evolution equations for eigenvalues and coefficients remaining the polynomial within proper class of polynomials are formulated. The connection with equations for hyper-elliptic Weierstrass and hyper-elliptic Jacobian functions is found. Algorithm of calculation of eigenvalues of the polynomials based on the evolution process is elaborated. Elements of the generalized dynamics with n-order characteristic polynomials are built.
Keywords: Nonspreading mapping, maximal monotone operator, inverse strongly-monotone mapping, fixed point, iteration procedure
RESUMEN
La teoría de invariantes es un estudio de las propiedades de los polinomios que se desarrolla en las transformaciones de traslación. Se introduce una clase de polinomios congruentes con un conjunto de valores propios. Se formulan ecuaciones de evolución de los valores propios y los coeficientes del polinomio restante dentro de la clase adecuada de los polinomios. Se encuentra la conexión con las ecuaciones de Weierstrass hiperelípticas y funciones jacobiano hiper-elíptica. Son elaborados algoritmos de cálculo de valores propios de los polinomios basado en el proceso de evolución.
Mathematics Subject Classification: 12Yxx
References
[1] Akhiezer N.I., Elements of theory of elliptic functions, Moscow, "Nauka", 1970. [ Links ]
[2] G.Belardinelli, Fonctions hypergeometriques de plusieurs variables et resolution analitique des equations algebriques generales. Paris: Gauthier-Villars, 1960. [ Links ]
[3] F.Cajoris, History of Mathematics, New York, 1919, pp.349-350. I.Richards, An application of Galois theory to elementary arithmetic, Advances in Mathematics 13 (1974) 268-273. [ Links ]
[4] Harold T.Davis, Introduction to nonlinear differential and integral euations. Dover Publications, INC.,N.Y., 1968. (ISBN 0-486-60971-5) [ Links ]
[5] P.Fjelstad, S.Gal, Two dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Advances in Applied Clifford algebras, 11(1), (2001), 81. [ Links ]
[6] Ch.Hermite, Sur la resolution de l'eqation du cinquieme degree C.R.Acad.Sci.Paris. - 1858. V.46. Ch.Hermite, Sur l'eqation du cinquieme degree C.R.Acad.Sci.Paris. - 1865. V.46; 1866.-V.62. [ Links ]
[7] L.K.Lakhtin, Algebraic equations resolvables in hypergeometric functions (in russian) M.,1893. Differential resolvents of algebraic equations of higher degree. M.,1896. [ Links ]
[8] L.N.Lipatov, M.Raush de Traubenberg, G.G.Volkov, On ternary complex analysis and its applications. arXiv: 0711.0809v1 [math-ph ] 6 Nov. 2007. [ Links ]
[9] L.J.Mordell, On the rational solutions of the indeterminate equations of the 3-rd and 4-th degrees. Proc.Camb.Phill.Soc. 21 (1922) 179-192. [ Links ]
[10] P.J.Olver, Classical Invariant Theory, LondonMathematical Society Student Texts 44, Cambridge Univeristy Press, 1999. [ Links ]
[11] A.R.Rodriguez-Dominguez, Lorentz.force equations as Heisenberg equations for 4D-quantum system. Revista Mexicana de Fisica 53 (4) (2007) 270-280. [ Links ]
[12] H.Weber, Lehrbuch der Algebra.Bd.2. Gruppen. Lineare Gruppen. Anwendungen der Gruppen Theorie. Algebraische Zahlen.- Braunschweig, 1899. H.Weber, Lehrbuch der Algebra.Bd.3. Elliptische Functionen und algebraische Zahlen.- Braunschweig, 1908. [ Links ]
[13] R.M.Yamaleev, Multicomplex algebras on polynomials and generalized Hamilton dynamics, J.Math.Anal.Appl., 322, (2006), 815-824. R.M.Yamaleev, Complex algebras on N-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. Advances in Applied Clifford algebras, 15(1), (2005), 123. [ Links ]
[14] R.M.Yamaleev, "Relativistic Equations of Motion within Nambu's Formalism of Dynamics", Ann.Phys. 285 (2) (2000) 141-160. [ Links ]
[15] R.M.Yamaleev, "Generalized Newtonian Equations of Motion", Ann.Phys. 277 (1) (1999) 1-18; R.M.Yamaleev, "Elliptic and Hyperelliptic Deformed Mechanics in n-Dimesional Phase Space", JINR Communications,P2-94-109,Dubna, (1995); R.M.Yamaleev, "Generalized Lorentz-Force Equations", Ann.Phys. 292 (1) (2001) 157-178. [ Links ]
[16] R.M.Yamaleev, Extended Relativistic Dynamics of Charged Spinning Particle in Quaternionic Formulation, Advances in Applied Clifford Algebras, 13(2), (2003), 183-218. R.M.Yamaleev, Ternary Electrodynamics, Far East J.Dynamic Systems, 9(2) (2007) 307-324. [ Links ]
Received: February 2009.
Revised: September 2009.