SciELO - Scientific Electronic Library Online

 
vol.46 issue2Proposal of an integrated system for forecasting Harmful Algal Blooms (HAB) in ChileFirst record of black corals (Antipatharia) in shallow coastal waters of northern Chile by means of underwater video author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Latin american journal of aquatic research

On-line version ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.46 no.2 Valparaíso  2018

http://dx.doi.org/10.3856/vol46-issue2-fulltext-19 

Short Communication

Development and characterization of thirty-two microsatellite markers for the anchovy, Engraulis ringens Jenyns, 1842 (Clupeiformes, Engraulidae) via 454 pyrosequencing

Sandra Ferrada-Fuentes1  2 

Ricardo Galleguillos1 

Cristian B. Canales-Aguirre3  4 

Victoria Herrera-Yañez1  5 

1Laboratorio de Genética y Acuicultura, Departamento de Oceanografía Universidad de Concepción, Concepción, Chile

2Programa de Doctorado en Sistemática y Biodiversidad, Universidad de Concepción Concepción, Chile

3Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile

4Nucleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile

5Programa de Magister en Ciencias m/ Zoología, Universidad de Concepción Concepción, Chile

ABSTRACT

The anchovy, Engraulis ringens, is an economically valuable fish, and the most heavily exploited resource in the Humboldt Current System. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 27,352 reads containing di-, tri-, tetra-, penta-, and hexanucleotide microsatellite repeat units were identified from 136,537 reads. Among 80 loci containing more than six repeat motifs, 32 primer sets (40%) produced reproducible PCR products, and all of these loci were polymorphic. Some loci showed deviations from HWE and possible null allele's presence, results of an excess of homozygotes. In an analysis of 45 individuals from one E. ringens population, the number of alleles per locus ranged from 2 to 33, observed heterozygosity ranged from 0.171 to 0.976, and the probability of identity values ranged from 0.006 to 0.513. These microsatellites will be useful for numerous ecological studies focused on this important pelagic fish; including the examination of population genetic structure, estimating effective population size and providing information for fisheries management.

Keywords: Engraulis ringens; Peruvian anchovy; genetic diversity; Humboldt Current System; Chile

Microsatellite loci are widely used to understand how the genetic diversity of marine organisms is distributed along the geographic space. In addition, this information can be useful for management of marine resources (Canales-Aguirre et al., 2010a, 2010b, 2016; Galleguillos et al., 2011, 2012; Ferrada-Fuentes et al., 2014). Traditional Short Sequence Repeat (SSR) development is time-consuming and involves laborious iterations of genomic DNA library screening with SSR probes required to isolate microsatellite-containing sequences (Castoe et al., 2012). Next-generation sequencing technologies are remarkably well-developed and are widely used for genome sequencing, transcriptome sequencing, and genome deep-sequencing in animals (Ferrada-Fuentes et al., 2014; Plough & Marko, 2014). The use of new technologies, like Illumina, 454 or SOLiD sequencing, to create and characterize microsatellite loci, quickly obtaining a large number of microsatellite loci without the need to clone a library (Castoe et al., 2012).

The anchovy, Engraulis ringens Jenyns, 1842, is a small pelagic fish exploited for its high commercial value in the Humboldt Current System. This species sustains the world's largest single-species fishery with 6.5 million ton landed per year on average over the last decade (Bertrand et al., 2008). The anchovy plays a key ecological role in the Humboldt Current System because it is the major prey of predators such as fish, marine mammals and seabirds (Espinoza & Bertrand, 2008). Thus, the anchovy is essential for the maintenance of the integrity of this ecosystem (Espinoza & Bertrand, 2008). To date, little is known about their genetic diversity and their spatial genetic structure. Only two polymorphic genes (i.e., Calmodulin and Internal Transcribed Spacers, ITS1) have been used, however, these showed low polymorphisms at the population level (Ferrada et al., 2002). To contribute to filling this gap in knowledge (looking for more polymorphic molecular markers), in this study we report the isolation and characterization of 32 polymorphic loci for E. ringens. These microsatellite loci were developed as a tool for estimating genetic diversity and population genetic structure in this species, with the goal of providing baseline information for management plans aimed at their protection.

The samples used in this study were collected in accordance with the national legislation of the country (Chile). We did not kill fishes for the purpose of this study. We obtained tissue samples after samples were fished from authorized purse seine fishing commercial vessels. No specific approval is required for this vertebrate. Total genomic DNA was extracted from four individuals of Engraulis ringens collected in the Arauco Gulf, Chile (36°55.2'S, 73°22.8'W), using Nucleospin Tissue Kit (Machery and Nagel), following manufacturer protocol. DNA samples were checked with the Bioanalyzer Agilent Model 2100. The enriched library was built using a range of 500 ng to 1 μg of DNA, the GS Rapid Library Preparation kit and a single lane run on a Roche 454 GS Junior system were used to sequence a part of the genome. The NGS was performed at OMICS Solutions (http://omicssolutions.cl). Sequencing gene-rated a total of 80.7 Mb of quality-filtered data, corresponding to 136,537 non-redundant reads. The MISA 4.0 software (http://pgrc.ipk-gatersleben.de/misa/) was used to search for repeated motifs (di-, tri-, tetra-, penta-, and hexanucleotide), and primers were designed using Primer3 (http://bioinfo.ut.ee/primer3-0.4/). A total of 27,352 reads with microsatellites were detected, resulting in 13,211 reads with primers.

Genomic DNA from 45 individuals was used to test 80 microsatellites. Polymerase chain reaction (PCR) amplifications were performed in a 10 μL volume (10 mM Tris pH 8.4, 50 mM KCl, 25 μg mL-1 BSA, 0.4 μM unlabeled reverse primer, 0.04 μM of forward primer (fluorescently labelled 6-FAM, NED, PET or VIC), 3 mM MgCl2, 0.8 mM dNTPs, 0.5 units Taq Polymerase (Invitrogen), and 20 ng DNA template using an Applied Biosystems GeneAmp 9700. A touchdown thermal cycling program (Don et al., 1991) encompassing a 10°C span of annealing temperatures ranging between 65-55°C was used for all loci. Touchdown cycling parameters consisted of an initial denaturation step of 5 min at 95°C followed by 20 cycles of 95°C for 30 s, highest annealing temperature of 65°C (decreased 0.5°C per cycle) for 30 s, and 72°C for 30 s; and 20 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, with a final extension at 72°C for 5 min. PCR products were run on an ABI-3130xl sequencer using GS-500 (LIZ) as an internal size standard. Microsatellites were analyzed using Peak Scanner v1.0 (Applied Biosystems). Unambiguous scoring was possible for 32 polymorphic loci. We assessed the genetic diversity of the 32 polymorphic loci in 45 specimens collected from the Arauco Gulf, Chile.

Characteristics of the loci are provided in Table 1. We estimated the number of alleles per locus (NA), observed and expected heterozygosity (HO and HE), and the probability of identity (PI) using GenAlEx v6.5 (Peakall & Smouse, 2012). The presence of null alleles was evaluated using MicroChecker v.2.2.3 (Van Oosterhout et al., 2004). Tests for deviations from Hardy-Weinberg equilibrium (HWE) and for linkage disequilibrium were conducted using Genepop v4.0 (Rousset, 2008). Parameters for linkage disequilibrium were as follows: 1000 dememorization steps, 100 batches, and 1000 iterations per batch.

Table 1 Characterization of 32 polymorphic microsatellite loci developed for Engraulis ringens from central Chile. 

Locus (accession no) Primer pair sequence (5′-3′) Dye Repeat motif Size range (bp) Ni NA Ho HE PI P-value (HWE)
6μER (KY073503) F: TGGGTTGATAAATAGACTAGA
R: AGTATTAACACTTGTAGGTGC
6-FAM (ATGA)5 175-218 35 6 0.771 0.677 0.150 0.913
7μER (KY073509) F: GGATGATATTTCTCACTTTG
R: GTTTTTCACACTCTAAATGTC
VIC (CACT)5 226-255 37 4 0.297 0.408 0.414 0.004
9μER(KY073S17) F: GATAAAAGCACTGTCTGTATT
R: ACTAATGAATGTTAAGCAGTC
NED (GTCT)5 257-320 37 8 0.730 0.787 0.078 0.444
11μER (KY073523) F: GTCAAGGAAAACAGTTTATT
R: AGAGCACAATAGAAGTTGATA
PET (TATT)5 168-273 38 6 0.474 0.667 0.144 0.009
17μER (KY073515) F: TTAGTA1ATGGGTATGTGTCC
R: CAAGATTCACACTATGTAAGC
6-FAM (TGA)7 155-218 35 14 0.200 0.875 0.027 0.000
18μER (KY073496) F: AAACACTACACTCATGAACTG
R: GAGTCTACATGTGTAAAGTCG
VIC (AC) 12 113-255 44 20 0.750 0.905 0.016 0.000
21μER (KY073495) F: ATGTACAACTTCCAAAATCT
R: ATIACTGGTATGAAATGAGTG
PET (CTA)8 117-229 41 18 0.366 0.911 0.014 0.510
22μER (KY073505) F: GTGTGTATGTTTCTTTTCAA
R: TCTCTATGGGACTTTAACATA
6-FAM (CAGA)6 273-296 43 6 0.674 0.659 0.166 0,003
27μER (KY073519) F: GCTTTCTGGATGTTTTAGAT
R: AACACTATCTGACAACTGACA
VIC (TGTC)6 149-257 44 4 0.455 0.513 0.347 0.833
28μER (KY073499) F: CATGGTTTTAAATCTGTGAC
R: TACAAATGAGAGCAAATACA
NED (TTTA)6 239-297 41 12 0.854 0.857 0.036 0.972
25μER (KY073504) F: CATCAAAGTTATTCACTTCAC
R: GAATTCTTCTAACTGACACT
PET (TCAT)6 145-287 35 7 0.886 0.646 0.180 0.310
44μER (KY073512) F: TACACAAGACGTTTCAGAGT
R: TACATACAACCTTGGAGACT
6-FAM (TGG)9 129-160 33 11 0.273 0.884 0.025 0.000
36μER (KY073518) F: GTGTATATTTGATGGCACTT
R: CAGAGTACTCTTTGAGTGTTG
VIC (TGGTG)5 142-194 39 7 0.205 0.464 0.308 0.000
38μER (KY073510) F: GACAAGAGATTAACATTACCA
R: AATAACTGTAAGTCGCTTTG
NED (TTACA)5 147-158 41 3 0.171 0.298 0.513 0.003
35μFR (KY07352I) F: CTCAGTGGAAACAAGTCACT
R: TAAATACATGCTTAAGAGTCC
PET (GCAAG)5 147-174 40 4 0.425 0.457 0.332 0.060
75μER (KY073497) F: CTGTAATATCCACTCAAAGAT
R: TTTTTCACAGTATAATGCTG
6-FAM (ACACAG)9 172-358 39 16 0.359 0.923 0.014 0.000
45μER (KY073502) F: ATAAAAAGTTGAGGCTGTTT
R: GACTTTGAAGACAGCTGTAC
VTC (ATTC)7 162-203 44 9 0.795 0.765 0.088 0.460
48μFR (KY073520) F: CCAATAGTTCAGTAGTACCAG
R: ACAGTAAGCTAGAGTATCCAG
NED (GCT)10 136-175 43 12 0.860 0.832 0.048 0.995
39μER (KY073522) F: GTTGTCAGAAGCTTTAGTCA
R: GATAAGAAATACACAGGAAAG
PET (TTTCC)5 143-193 44 10 0.636 0.829 0.048 0.032
50μER (KY073514) F: GTCTAGGGGTGTAAATAATAA
R: TCCACTTCTATTATGTTATGG
6-FAM (ATCGT)6 157-163 42 2 0.976 0.500 0.375 0.000
53μER (KY073498) F: TGTAGAAGAAAGTGACAGAGA
R: GTTTATTGGTGTGAGTCATT
VIC (GA)17 136-235 45 33 0.822 0.943 0.006 0.033
61μER (KY073501) F: GAGATIIAGCAGACAGATGT
R: TAGTATTCTCAACACGTAGCT
NED (AG)20 190-226 45 11 0.756 0.880 0.027 0.258
49μER (KY073508) F: ATCATTATGCTAATGTCTGC
R: GGACTTTTTAGCATCAGTAT
PET (ACAGC)6 126-171 44 10 0.773 0.830 0.050 0.427
65μER (KY073511) F: TCTGTGACTTCTGTAACTCAG
R: GTGTGTGAGGTTTAGATGTG
VIC (GT)21 139-252 43 18 0.721 0.880 0.026 0.000
67μER (KY073525) F: GTTCATTAATAAGCAGAAGAG
R: TTCACCAAGATATTACTCACT
PET (CACGCA)6 232-297 42 14 0.690 0.822 0.048 0.001
63μER (KY073524) F: TTCATTATCACAGCTAGTAGC
R: GAACTGATAAAGAGGAGAGAT
PET (CTTCT)8 118-208 42 14 0.643 0.848 0.039 0.000
72μER (KY073506) F: TTTTCTTTACATTAGCACAG
R: AATTTGTAGTACAGCTGTGTC
NED (ACACAT)5 187-308 45 11 0.444 0.660 0.174 0.001
73μER (KY073516) F: ACTTTGAGTCTGGAATAAAGT
R: CCATAGATTAGAGGACAATAA
NED (TGA)17 106-185 44 20 0.932 0.915 0.014 0.678
69μER (KY073513) F: GGCCTACATTAATAACATACT
R: CTAATGTGGGAATATAGTGAG
PET (TAA)15 122-174 45 18 0.756 0.915 0.013 0.000
26μER (KY073500) F: ACTACAGTAACTTCATGATGG
R: TGGAATACAGTAGAGTAGGTG
NED (TGGA)6 133-229 39 15 0.333 0.842 0.040 0.000
75μER (KY073497) F: CTGTAATATCCACTCAAAGAT
R: TTTTTTCACAGTATAATGCTG
6-FAM (TTAGGG)5 223-323 39 16 0.359 0.911 0.014 0.000
24μER (KY073494) F: ATAGTAGGCCACACTCACTC
R: ATGACATCATTGTGAGAACT
VIC (TCAC)6 201-250 44 10 0.500 0.819 0.056 0.000

Size range: indicates the range of observed alleles in base pairs and not includes primer; Ni. number of individuals genotyped; NA. number of alleles observed; Ho and HE: observed and expected heterozygosity, respectively; PI. probability of identity for each locus. HWE: exact P-values of Hardy-Weinberg Equilibrium test;

significant deviations from Hardy-Weinberg expectations after Bonferroni corrections (corrected alfa = 0.001).

Loci with the possible presence of null alleles are in bold.

Thirty-two of the tested primer pairs amplified high-quality PCR product exhibiting polymorphism. We observed a low percentage of amplification failure (maximum of 26% 44μER: Table 1) among the samples used in this study.

The number of alleles per locus ranged from 2 (50μER) to 33 (53μER), observed heterozygosity ranged from 0.171 (38μER) to 0.976 (50μER), and the probability of identity values ranged from 0.006 (53μER) to 0.513 (38μER). No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent.

Twelve loci showed moderate polymorphisms (2-9 alleles) and 20 loci were highly polymorphic (10-33 alleles). The number of alleles and observed heterozygosity obtained in E. ringens was higher than previously reported in marine fishes (NA = 20 and HO = 0.790) (DeWoody & Avise, 2000). High NA and HO are common in species that have a large population size and/or high mutation rate (higher than 10-4 mutations/gene/generation) (Jarne & Lagoda, 1996). After Bonferroni correction for multiple comparisons, 12 loci showed significant deviations from expectations under HWE. There are several explanations for the deficits of heterozygosity in these 12 loci. Rico et al. (1997) reviewed the possible causes of excess homozygosity, evaluating various hypotheses concerning genotyping errors, the presence of null alleles, the Wahlund effect (Wahlund, 1927) inbreeding, assortative mating, and/or selection. Deviations from HWE associated with an excess of homozygotes seem to be common in fish species (O'Connell & Wright, 1997). Moreover, the occurrence of null alleles has been commonly reported during the characterization of microsatellite loci and in population genetics studies (Dakin & Avise, 2004).

Therefore, the low occurrence of amplification failure in these loci may indicate that a significant excess of homozygotes may be a common characteristic in fish populations resulting from biological phenomena instead of the presence of null alleles. We recommend evaluating these hypotheses before using disequilibrium loci in population studies.

These new loci will provide tools for examining population structure of this species and aid in better understanding of the ecology and conservation of E. ringens. This information will help determine appropriate fisheries management action along the Humboldt Current System coast for this highly exploited species.

ACKNOWLEDGMENTS

This work forms part of the FIPA 2015-22, and DIUC 212.113.083-1.0. Cristian B. Canales-Aguirre is supported by Nucleo Milenio INVASAL funded by Chile's government program, Iniciativa Cientifica Milenio from Ministerio de Economia, Fomento y Turismo.

REFERENCES

Bertrand, S., E. Díaz & M. Lengaigne. 2008. Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data. Prog. Oceanogr., 79: 379-389. [ Links ]

Canales-Aguirre, C.B., S. Ferrada & R. Galleguillos. 2010a. Isolation and characterization of microsatellite loci for the jack mackerel (Trachurus murphyi Nichols, 1920). Conserv. Genet., 11: 1235-1237. [ Links ]

Canales-Aguirre, C.B., S. Ferrada, C.E. Hernández & R. Galleguillos. 2010b. Population structure and demographic history of Genypterus blacodes using microsatellite loci. Fish. Res., 106: 102-106. [ Links ]

Canales-Aguirre, C.B., S. Ferrada-Fuentes, R. Galleguillos & C.E. Hernández. 2016. Genetic structure in a small pelagic fish coincides with a marine protected area: seascape genetics in Patagonian Fjords. PLoS ONE, 11: e0160670. [ Links ]

Castoe, T.A., A.W. Poole, A.P.J. de Koning, K.L. Jones, D.F. Tomback, S.J. Oyler-McCance, J.A. Fike, S.L. Lance, J.W. Streicher, E.N. Smith & D.D. Pollock. 2012. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE, 7: e30953. [ Links ]

Dakin, E.E. & J.C. Avise. 2004. Microsatellite null alleles in parentage analysis. Heredity, 93: 504-509. [ Links ]

DeWoody, J.A. & J.C. Avise. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol., 56: 461-473. [ Links ]

Don, R.H., P.T. Cox, B.J. Wainwright, K. Baker & J.S. Mattick. 1991. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res., 19(4): 4008. [ Links ]

Espinoza, P. & A. Bertrand. 2008. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current System. Prog. Oceanogr., 79: 215-227. [ Links ]

Ferrada, S., K. Hernández, R. Montoya & R. Galleguillos. 2002. Estudio poblacional del recurso anchoveta (Engraulis ringens Jenyns, 1842) (Clupeiformes, Engraulidae), mediante análisis de ADN. Gayana., 66: 243-248. [ Links ]

Ferrada-Fuentes, S., R. Galleguillos, C.B. CanalesAguirre, C.N. Love, K.L. Jones & S.L. Lance. 2014. Development and characterization of thirty-three microsatellite markers for the Patagonian sprat, Sprattus fuegensis (Jenyns, 1842), using paired-end Illumina shotgun sequencing. Conserv. Genet. Resour., 6: 833-836. [ Links ]

Galleguillos, R., C.B. Canales-Aguirre & S. Ferrada. 2012. Genetic variability in jack mackerel Trachurus murphyi Nichols: new SSRs loci and application. Gayana, 76: 67-71. [ Links ]

Galleguillos, R., C.B. Canales-Aguirre, S. Ferrada & A. Barrera. 2011. SSRs in Octopus mimus: development and characterization of nine microsatellite loci. Rev. Biol. Mar. Oceanogr., 46: 491-494. [ Links ]

Jarne, P. & P.J. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol., 11: 424-429. [ Links ]

O'Connell, M. & J.M. Wright. 1997. Microsatellite DNA in Fishes. Rev. Fish. Biol. Fish., 7: 331-363. [ Links ]

Peakall, R. & P.E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537-2539. [ Links ]

Plough, L.V. & P.B. Marko. 2014. Characterization of microsatellite loci and repeat density in the gooseneck barnacle, Pollicipes elegans, using next-generation sequencing. J. Hered., 105: 136-142. [ Links ]

Rico, C., K.M. Ibrahim, I. Rico & G.M. Hewitt. 1997. Stock composition in North Atlantic populations of whiting using microsatellite markers. J. Fish. Biol., 51: 462-475. [ Links ]

Rousset, F. 2008. Genepop'007: a complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour., 8: 103-106. [ Links ]

Van Oosterhout, C., W.F. Hutchinson, D.P.M Wills & P. Shipley. 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data Mol. Ecol. Notes, 4: 535-538. [ Links ]

Wahlund, V. 1927. Zusammensetzung von populationen und kor relation serscheinungen vomstand punkt der vererbungslehreausbetrachtet. Hereditas, 11: 65-106. [ Links ]

Received: March 31, 2017; Accepted: June 21, 2017

Corresponding author: Cristian B. Canales-Aguirre (cristian.canales@ulagos.cl)

Corresponding editor: Jesús T. Ponce Palafox

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.