SciELO - Scientific Electronic Library Online

vol.43 número5Comportamiento agonístico de machos feminizados atípicos en relación a machos y hembras de tilapia del Nilo (Oreochromis niloticus L.)Diversidad genética del mejillón (Mytilus chilensis) y diferenciación entre localidades del sur de Chile usando marcadores microsatélites heterólogos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Latin american journal of aquatic research

versión On-line ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.43 no.5 Valparaíso nov. 2015 

Short Communication


Soundscape of a management and exploitation area of benthic resources in central Chile

Paisaje acústico de un área de manejo y explotación de recursos bentónicos en Chile Central


Alfredo Borie1, Natalia P.A. Bezerra2, Sebastian A.L. Klarian3 & Paulo Travassos1

1Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco CEP 52.171-900, Recife, Brasil
Departamento de Oceanografia, Universidade Federal de Pernambuco CEP 50670-901, Recife, Brasil 
Centro de Investigaciones Marinas Quintay, Facultad de Ecología y Recursos Naturales Universidad Andres Bello, Valparaíso, Chile 

Corresponding author: Alfredo Borie-Mojica (
Corresponding editor: Diego Giberto

ABSTRACT. Acoustic ecology is an emerging and poorly known field of research. Soundscape has been used to infer the behavior of several species in different environments and can serve as a reliable indicator of the habitat type and quality; also, it is believed that it is an important factor for larvae orientation in settlement areas. We used the passive acoustic method to evaluate the soundscape of a management and exploitation area of benthic resources, a rocky reef area in central Chile. It was possible to hear a continuous cracking sound during recording and underwater observations. We detected two distinct frequency bands with similar parameters during the night and day, a band between 90 and 300 Hz, which corresponded to the effects of sea waves (geophony), and a frequency band with a range of 1,500 to 2,700 Hz (biophony), with a fundamental frequency of 2,070 Hz. Both bands had similar energy (~88.0 dB re: 1V/µPa). These results show the relevant acoustic activity in the area, which may have important ecological implications for the recruitment of commercially important benthic resources.

Keywords: bioacoustics, acoustic ecology, coastal zone, biophony, geophony, central Chile.

RESUMEN. La ecología acústica es un campo de investigación emergente y poco conocido. El paisaje acústico se ha utilizado para inferir el comportamiento de varias especies en diferentes ambientes y puede servir como un indicador confiable del tipo y calidad de hábitat, además se considera un factor importante para la orientación de larvas en zonas de asentamiento. Se utilizó el método acústico pasivo para evaluar el paisaje acústico de un área de manejo y explotación de recursos bentónicos, en una zona de arrecife rocoso en el centro de Chile. Se escuchó continuamente un crujido durante la grabación y se efectuaron observaciones submarinas. Se detectaron dos bandas de frecuencia con parámetros similares durante día y noche, una banda entre 90 y 300 Hz, que correspondía a los efectos de las olas del mar (geofónico), y una banda de frecuencia con rango de 1.500 a 2.700 Hz (biofónicos), con la frecuencia fundamental de 2.070 Hz. Ambas bandas tenían energía similar (~88,0 dB re: 1V/µPa). Estos resultados muestran la relevante actividad acústica de la zona, que puede tener importantes implicancias ecológicas para el reclutamiento de recursos bentónicos de importancia comercial.

Palabras clave: bioacústica, ecología acústica, zona costera, biofonía, geofonía, Chile central.


The set of sounds for a given environment can be considered as a soundscape and the use of such sounds for ecological studies can be termed acoustic ecology, an emerging field of ecological research (Pijanowski et al., 2011a). Among the different perspectives with which it is possible to explore, describe and manage the ecological complexity of such environments, the soundscape may be an excellent proxy for both short-and long-term scientific investigations (Farina & Pieretti, 2012).

The subaquatic soundscape could be a composition of several types of sound sources, including biophonics, produced by aquatic mammals, fish and invertebrates in a given environment, but also both anthrophonics (i.e., vessels) and geophonics (i.e., sea waves) (Pijanowski et al., 2011b).

Biological sounds have been used to infer the behavior of several terrestrial and recently aquatic species. This production of sounds has been demonstrated in different aquatic environments, such as, the deep ocean (Wall et al., 2014), estuaries (Lillis et al., 2014), coral reefs (Staaterman et al., 2013, 2014). In addition, there are significant differences in the spectral and temporal composition of ambient sound associated with different coastal habitat types (Radford et al., 2010).

The characterization of the soundscape could serve as a reliable indicator of habitat type and potentially transmit habitat quality information to disperse organisms (Lillis et al., 2014). The soundscape can be used by larvae of marine organisms to return to settlement areas, in those species where settlement occurs. Research has indicated that juvenile fish (Leis & Lockett, 2005; Radford et al., 2011) and invertebrate larvae (Vermeij et al., 2010; Stanley et al., 2012; Eggleston et al., 2013; Lillis et al., 2013) use sound to locate habitats.

The monitoring of changes in the environment and its inhabitants is critical for management and a considerable technological challenge in many marine habitats. Monitoring tools, like passive acoustics, can be an effective way to assess the biological activity in places where continuous monitoring by traditional research methods is not easy or possible.

We used passive acoustics to evaluate biophonic and geophonic (sea wave effect) components of soundscape in Quintay (33°11’31"S, 71°42’05"W), one of the Management and Exploitation Areas of Benthic Resources (MEABRs) existing in Chile. Quintay MEABR is a typical rocky coastline of temperate marine environment. The most economically important benthic artisanal resources in this area are the muricid snail (Concholepas concholepas), the red sea urchin (Loxechinus albus) and keyhole limpets (Fissurella sp.) (Fernandez et al., 2000).

For an initial approach of Quintay soundscape, we first carried out free-diving observations for 1 h 20 min (starting at 05:00 pm), that helped us to identify representative fauna and potential sound sources in February (summer).

In addition, we recorded sounds in natural and captive environments using a hydrophone (H2a Aquarian, sensibility of 180 dB re: 1V/µPa and range of 10 Hz a 100 KHz) connected to a digital recorder (Olympus Digital Voice Recorder VN-701PC). In natural habitat, recordings were made during the night (12:15 am) and day (01:15 pm) at low tide and waning crescent moon, for 8 min and 44 sec each time, in Quintay Bay.

Captive species of representative local benthic fauna were recorded in different types of captive systems (ponds, tank and aquaria) at night and day for 10 min in each system in the Quintay Center of Marine Research (CIMARQ) installations. The captive species included L. albus, Tegula atra, Fissurella sp. C. concholepas, and also L. albus seeds with macroalgae, the Chilean blue crab Homalaspis plana, and fishes such as red cusk-eel (Genypterus chilensis), Chilean flounder (Paralichthys adspersus) and Paralabrax humeralis.




Sounds were analyzed in the software Raven pro v1.4, using acoustic parameters like energy (dB), fundamental, minimum and maximum frequencies (Hz), the analysis of the frequency bins of the acoustic spectrogram can provide proxies for understanding and interpreting acoustic patterns and processes in action across a landscape (Farina & Pieretti, 2012).

Continuously audible biological cracking sounds were heard during subaquatic observations. We observed a characteristic benthic diversity in the zone, including patches of macroalgae (Lessonia sp.), echinoderms (L. albus, Tetrapygus niger, Meyenaster gelatinosus, Heliaster helianthus), gastropods (Tegula atra, Fissurella sp., C. concholepas), and crustaceans (Rhynchocinetes typus, Taliepus dentatus) as expected and observed by Fernandez et al. (2000).

The spectrogram and power spectrum analyses of natural environment sounds showed two easily distinct bands and peaks respectively, at low tide and waning crescent moon during summer. A continuous band of biophony of cracking sounds and periodic geophony of waves (Fig. 1) were detected during recordings.


Figure 1. Spectrogram of soundscape of a management and exploitation area of benthic
resources in central Chile. a) 12:15 am, and b) 01:15 pm. Hanning 256 points with 50%
overlap, 70% brightness and 90% contrast.


The cracking bands had similar acoustic parameters to the natural environment during recordings at night (12:15 am) and day (01:15 pm), low and high frequency band between 1,500 and 2,700 Hz respectively, with a fundamental frequency of 2,070 Hz and an energy around 88.0 dB re: 1V/µPa (Figs. 1-2). Radford et al. (2010) found two bands dominated by sea urchins with a peak around 1,000 to 1,200 Hz, and snapping shrimp with a broad peak at 5,000 Hz in New Zealand. A distinct peak (2-4 kHz) was observed in habitat patches, attributable to a snapping shrimp focused in these frequency bands of inshore marine soundscapes (McWilliam & Hawkins, 2013).


Figure 2. Soundscape power spectrum of a benthic resource management
and exploitation area in central Chile. Red line: 12:15 am, and black line: 01:15 pm.
 Hanning 256 points with 50% overlap, brightness 70% and contrast 90%.


We found an absence of audible sound in all captive species. This was unexpected; the acoustic signals may be a significant component in the social behavior in crustaceans (Boon et al., 2009; Buscaino et al., 2011). The sea urchin Evechinus chloroticus in captivity can produce sound with frequencies in the range of 800 to 2,800 Hz during feeding, and it was consistent with the dominant component of the ambient chorus recorded near a reef (in the range of 700 to 2,000 Hz) (Radford et al., 2008). We found similar fundamental frequency in an isolated cracking composed of a train of pulses, with duration around 10 milliseconds and a variable interval (Fig. 3). For this reason, we believe that biological sounds in our study area were probably produced by the rocky shrimp Rhynchocinetes typus and sea urchin L. albus, even when we did not hear them in captivity.


Figure 3. a) Ocillogram and b) spectrogram of cracking train of a filtered section
(1.0 and 5.5 kHz) recorded during the day (01:15 pm). Hanning 256 points with
50% overlap, 70% brightness and 90% contrast.


The sea wave effect did not have an influence due to the very low frequency, in our case with a range between 90 and 300 Hz (note the continuously wave sound during the day, Fig. 1b) and the energy (dB) similar to the cracking sounds (Fig. 2). Ambient levels in frequencies affected by surf-generated noise (f <100 Hz) characterize the site as a high-energy end member within the spectrum of shallow water coastal areas influenced by breaking waves (Haxel et al., 2013). In general, the rocky reef soundscape includes bands of small waves, some fish and low frequency noise from distant shipping and offshore storms in a 100 to 800 Hz range (Radford et al., 2010).

Quintay soundscape could indicate that sounds can be used for larval orientation of important economic benthonic resources like C. concholepas and L. albus. However, we still need to evaluate the possibility of soundscape seasonality (including biophonic and anthrophonic sounds) during future long-term monitoring and find out the potential biological sound sources and larval orientation by sound in protected and exploited marine areas.



Boon, P.Y., D.C.J. Yeo & P.A. Todd. 2009. Sound production and reception in mangrove crabs Perisesarma spp. (Brachyura: Sesarmidae). Aquat. Biol., 5: 107116.         [ Links ]

Buscaino, G., F. Filiciotto, M. Gristina, A. Bellante, G. Buffa, V. Di Stefano, V. Maccarrone, G. Tranchida, C. Buscaino & S. Mazzola. 2011. Acoustic behaviour of the European spiny lobster Palinurus elephas. Mar. Ecol. Prog. Ser., 441: 177-184.         [ Links ]

Eggleston, D., A. Lillis & D.R. Bohnenstiehl. 2013. Larval settlement in response to estuarine soundscapes. J. Acoust. Soc. Am., 134(5): 4148-4148.         [ Links ]

Farina, A. & N. Pieretti. 2012. The soundscape ecology: a new frontier of landscape research and its application to islands and coastal systems. J. Mar. Isl. Cult., 1: 2126.         [ Links ]

Fernandez, M., E. Jaramillo, P. Marquet, C. Moreno, S. Navarrete, P. Ojeda, C. Valdvinos & J. Vasquez. 2000. Diversity, dynamics and biogeography of Chilean benthinc nearshore ecosytems: an overview and gidelines for conservation. Rev. Chil. Hist. Nat., 73: 797-830.         [ Links ]

Haxel, J.H., R.P. Dziak & H. Matsumoto. 2013. Observations of shallow water marine ambient sound: the low frequency underwater soundscape of the central Oregon coast. J. Acoust. Soc. Am., 133(5): 2586-2596.         [ Links ]

Leis, J.M. & M.M. Lockett. 2005. Localization of reef sounds by settlement-stage larvae of coral-reef fishes (Pomacentridae). Bull. Mar. Sci., 76: 715-724.         [ Links ]

Lillis, A., D. Eggleston & D.R. Bohnenstiehl. 2013. Oyster larvae settle in response to habitat-Associated Underwater Sounds. PloS ONE, 8: e79337.         [ Links ]

Lillis, A., D. Eggleston & D.R. Bohnenstiehl. 2014. Estuarine soundscapes: distinct acoustic characteristics of oyster reefs compared to soft-bottom habitats. Mar. Ecol. Prog. Ser., 505: 1-17.         [ Links ]

McWilliam, J.N. & A.D. Hawkins. 2013. A comparison of inshore marine soundscapes. J. Exp. Mar. Biol. Ecol., 446: 166-176.         [ Links ]

Pijanowski, B.C., A. Farina, S.H. Gage, S.L. Dumyahn & B.L. Krause. 2011a. What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecol., 26: 1213-1232.         [ Links ]

Pijanowski, B.C., L.J. Villanueva-Rivera, S.L. Dumyahn, A. Farina, B.L. Krause, B.M. Napoletano, S.H. Gage & N. Pieretti. 2011b. Soundscape ecology: the science of sound in the landscape. Bioscience, 61(3): 203-216.         [ Links ]

Radford, C.A., A.G. Jeffs, C.T. Tindle & J.C. Montgomery. 2008. Resonating sea urchin skeletons create coastal choruses. Mar. Ecol. Prog. Ser., 362: 37-43.         [ Links ]

Radford, C.A., J.A. Stanley, S.D. Simpson & A.G. Jeffs. 2011. Juvenile coral reef fish use sound to locate habitats. Coral Reefs, 30: 295-305.         [ Links ]

Radford, C.A., J.A. Stanley, C.T. Tindle, J.C. Montgomery & A.G. Jeffs. 2010. Localized coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser., 401: 21-29.         [ Links ]

Staaterman, E., A.N. Rice, D.A. Mann & C.B. Paris. 2013. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef. Coral Reefs, 32: 553-557.         [ Links ]

Staaterman, E., C.B. Paris, H.A. DeFerrari, D.A. Mann, A.N. Rice & E.K. D’Alessandro. 2014. Celestial patterns in marine soundscapes. Mar. Ecol. Prog. Ser., 508: 17-32.

Stanley, J.A., C.A. Radford & A.G. Jeffs. 2012. Location, location, location: finding a suitable home among the noise. Proc. Biol. Sci., 279: 3622-3631.         [ Links ]

Vermeij, M.J.A., K.L. Marhaver, C.M. Huijbers, I. Nagelkerken & S.D. Simpson. 2010. Coral larvae move toward Reef Sounds. PloS ONE, 5: e10660.         [ Links ]

Wall, C.C., R.A. Rountree, C. Pomerleau & F. Juanes. 2014. An exploration for deep-sea fish sounds off Vancouver Island from the Neptune Canada ocean observing system. Deep-Sea Res, I, 83: 57-64.         [ Links ]


Received: 18 May 2015;
Accepted: 6 August 2015


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons