SciELO - Scientific Electronic Library Online

vol.41 número5Respuesta inmune y expresión de genes en el camarón blanco (Litopenaeus vannamei) inducida por inmunoestimulantes microbianosEstructura genética del copépodo Acartia lilljeborgii en la costa del estado de Yucatán, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Latin american journal of aquatic research

versión On-line ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.41 no.5 Valparaíso nov. 2013 

Research Article


Synopsis on the knowledge and distribution of the family Bougainvilliidae (Hydrozoa, Hydroidolina)

Sinopsis sobre el conocimiento y distribución de la familia Bougainvilliidae (Hydrozoa, Hydroidolina)


María de los Angeles Mendoza-Becerril1 & Antonio C. Marques1

1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão Trav. 14, 101, 05508-090, São Paulo, SP, Brasil
Corresponding author: María de los Angeles Mendoza-Becerril (

ABSTRACT. The family Bougainvilliidae comprises a group of anthoathecate hydrozoans that is biologically, ecologically and biogeographically poorly understood, and consequently, poorly taxonomically organized. Here, our goal is to synthesize knowledge of the family from an historical perspective, and to analyze their potential distribution based on their ecology. We analyzed all the available information on the family (based on 303 articles and databases), comprising 15 genera and 97 valid species in five oceans. Two temporal peaks (1900 and 2000) in publications are dominated by records of meroplanktonic species. The coastal zone has the most frequently reported occurrences. The widest latitudinal ranges are found in the genera Bimeria and Bougainvillia. Ecological niche modeling of 25 species (MaxEnt algorithm) finds that chlorophyll is the most important variable that influences the distribution of the family. Five possible latitudinal distributional patterns are derived from the model, dominated by the subtropical-polar distribution.

Keywords: Filifera, Anthoathecata, Bougainvilliidae, niche, taxonomy, biogeography.

RESUMEN. La familia Bougainvilliidae comprende un grupo de hidrozoos antoatecados, taxonómicamente mal estructurado y biológica, ecológica y biogeográficamente poco conocidos. En este caso, el objetivo de este estudio es sintetizar el conocimiento actual de la familia, desde una perspectiva histórica, y analizar su potencial de distribución en función de su ecología. Se analizó toda la información disponible sobre la familia (en 303 artículos publicados y bases de datos), que comprende un total de 15 géneros y 97 especies válidas en cinco océanos. Históricamente las publicaciones presentaron dos máximos importantes (1900 y 2000), dominadas por registros de especies meroplanctónicas. La zona costera presenta las ocurrencias más frecuentes. Los géneros Bimeria y Bougainvillia son los que presentan la mayor distribución latitudinal. El modelaje de nicho ecológico de 25 especies, realizado con el algoritmo MaxEnt, reveló que la clorofila es la variable más importante que influye en la distribución de la familia. Cinco posibles patrones de distribución latitudinales se derivan del modelo, dominado por la distribución subtropical-polar" por " Cinco posibles patrones de distribución latitudinal fueron reflejados en los modelos, siendo dominante la distribución subtropical-polar.

Palabras clave: Filifera, Anthoathecata, Bougainvilliidae, nicho, taxonomía, biogeografía.



The "hydroid" family Bougainvilliidae Lutken, 1850 pertains to a group of historically and conveniently (i.e., not monophyletically) described of cnidarians in the orders Leptothecata and "Anthoathecata" (the latter, also not monophyletic, Cartwright et al., 2008) in the class Hydrozoa. As with other anthoathecates, the family Bougainvilliidae has two phases in its life cycle: fixed to a substrate as a polyp and as free-swimming medusae (which may also have a reduced form that remains with the polyp, Russell, 1953). The pseudohydrotheca characterizes this family and it is defined as an external, glycosaminoglycan covering, with or without detrital incrustations, that envelops the hydrants and which can be reduced in some genera (cf., Calder, 1988; Schuchert, 2007).

The taxonomy of the family remains poorly structured, most likely as a consequence of the few studies of its biology, ecology and geographical distribution. Despite the 200 years since the description of the first species in the family (Koellikerina fasciculata Péron & Lesueur, 1810), there are no compilations or syntheses of the family, its distribution or genera. Today, information is fragmented, from pioneer studies beginning ca. 150 years ago (Allman, 1871; Haeckel, 1879; Mayer, 1910; Kramp, 1961) to taxonomic lists in secondary sources (i.e., compilations) of Medusozoan species (Bouillon & Boero, 2000; Bouillon et al., 2006), or in data bases such as the World Register of Marine Species (WoRMS; Appeltans et al., 2011) and the relatively few ecological (Ballard & Myers, 1996; Frost et al., 2010; Genzano, 1994) and taxonomic studies (Segura-Puertas, 1991; Xu & Huang, 2004, 2006; Xu et al., 2007a, 2007b, 2009, Nogueira Jr. et al., 2013).

Here, we will summarize the deficiencies of understanding the Bougainvilliidae, so that we may then proceed to build a context in which we can better understand the group and suggest avenues for their future study in biogeography, ecology and taxonomy. More specifically, we will synthesize current knowledge of the family based on historical and distribution perspectives, with which we will carry out an ecological analysis to predict potential occurrence of this interesting and diverse family.


Basic taxonomy of the Bougainvilliidae and its place within the Hydrozoa follow Marques & Collins (2004), Bouillon et al. (2006); Schuchert (2007) and Cartwright et al. (2008). To determine historical series and distributions, we gathered 303 articles about the family published between 1890 and 2013. With this information, and databases, such as Genetic Sequence (GenBank) and WoRMS, we developed a data base for each genus and species, with a total of 1290 records having the following information: author, life-cycle phase, reproductive state, sex, location (body of water, country, state, region, latitude and longitude), date of collection, water depth (minimum, maximum), substrate type, salinity, temperature, synonymy and references cited. We then examined the historical and geographical information compiled.

To generate potential distribution models for valid species, we used the information from the data base described above, separating by life-cycle phase (polyp and medusa). Species were plotted using ArcGIS vers. 10 (ESRI, 2010). Environmental descriptive variables were: average surface water temperature, average surface salinity, and average concentration of nitrates, phosphates, oxygen and chlorophyll, from the BioOracle database (Tyberghein et al., 2011). We modeled using the Maxent algorithm (maximum entropy approach; Phillips et al., 2006). We used a threshold-independent measure, the area under the curve (AUC), to evaluate models and a Jackknife method (Sokal & Rohlf, 1995; Phillips et al., 2006) was used to examine the importance of each variable to the final model. The results of this evaluation are expressed as a measure known as gain, which shows the ecological requirements of each species, and probably determine their potential distribution. Classification of AUC values followed Metz (1986), as excellent (0.90-1.0), good (0.80-0.90), average (0.700.80), bad (0.60-0.70) and very bad (0.50-0.60).


The Bougainvilliidae comprise a total of 19 genera and 170 named species, of which 54 species were synonymized. Most of these are the cosmopolitan species Bougainvillia muscus (Allman, 1863). Another 19 species were doubtful. Thus, a total of 15 genera and 97 species are valid (Table 1) representing about 3% of the Hydrozoa species in the world (3,140 species, cf. Bouillon et al., 2006).


Table 1. Species described in the literature of the family Bougainvilliidae with life-cycle phase indicated and distribution. P: polyp, M: medusa.


Species in the Bougainvilliidae tend to be meroplanktonic genera (e.g., Bougainvillia, Koellikerina and Nubiella, Table 2), and are not the most studied. About 65% of publications are about the genera Bimeria (which is benthic) and Bougainvillia. While reports of new species has been continuous, the species accumulation curve shows that about six new species per decade are being described, and therefore the asymptotic number of species is far from being reached (Fig. 1).


Table 2. List of valid species in the genera of Bougainvilliidae, 1809 to 2013. M: medusa, P: polyp.


Figure 1. Cumulative number of species described since 1809 to date (2013) and number of studies that include the family Bougainvilliidae since 1809, by decade. The line indicates the cumulative number of species and the bars indicate of number the articles.


Historically, studies of the Bougainvilliidae have had several temporal hiatuses. Beginning in 1900, with very few studies from 1920-1950, increasing in the 1950s and still doing so (Fig. 1), with most of these studies (3-10 papers each) being by Calder, Galea, Genzano, Marques, Pagés, Palma, Schuchert, Segura-Puertas and Xu. Most of these were studies in tropical and southern Atlantic, northeast and northwest Atlantic, southwestern and central eastern Pacific oceans, in contrast with previous studies, which were mostly in European and North American waters.

Geographically, valid species are found in all oceans, within a range of 155° of latitude, from 76.93oN to 78.49oS, and 360° of longitude (Fig. 2). Most species occur in the Pacific (73%), with 48% in the Atlantic, 26% in the Indian Ocean, 4% in the Arctic, and 5% in the Southern Ocean (Fig. 3). The Atlantic Ocean is the best studied, with 60% of all publications on the family, while the least studied are the Indian and Southern oceans. Latitudinally, most valid species were described between 30-40°N (44 species, Fig. 4).


Figure 2. Current global distribution of all known valid species in the family Bougainvilliidae.


Figure 3. Percent of the total number of currently valid species in the family Bougainvilliidae found in each ocean. The total adds to greater than 100% because several species are found in more than one ocean.


Figure 4. Frequency distribution over latitude of the number of currently valid species in the family Bougainvilliidae.


The widest latitudinal distributions are found in the genera Bimeria and Bougainvillia. Bimeria is found from 56.1°N to 76.1°S (Fig. 5), mostly due to the species Bimeria vestita. The remaining species are more localized and usually in sublitoral waters (15569 m, Vanhöffen, 1910; Fraser, 1938). Bimeria vestita is considered to be cosmopolitan (Ramil & Vervoort, 1992), although without records from the Arctic and Southern oceans (but see Marques et al., 2000), is eurythermic (16-31oC), euryhaline (salinity 29.0-36.5; Calder, 1993; Migotto, 1996), and in shallow (<25 m) to deep waters (358 m) (Vanhöffen, 1910, Wedler & Larson, 1986; Marques & Migotto, 2004; Genzano et al., 2009). The Bougainvillia are found between 76.86oN and 54.0oS (Fig. 5), in water temperatures of 0.8° to 20.7°C (Vannucci, 1957; Calder, 1990; Petrova et al., 2011), and the greatest depth record was 7000 m (Kramp, 1965).


Figure 5. Latitudinal range for genera in the family Bougainvilliidae. indicates genera in polyp phase, indicates genera in medusa phase. The number above the bars is the number of valid species for each genus. Fragmented bars indicate that the latitudinal distribution is not continuous.


Species in the remaining genera have fragmented distributions (Fig. 5):

Chiarella is in the Gulf of California (Brinton et al., 1986), and subequatorial zone of the Pacific Ocean;

Dicoryne is antitropical at depths of 1-400 m (Hirohito, 1988; Schuchert, 1996);

Garveia is most commonly reported from subequatorial and tropical regions in the northern hemisphere in the Atlantic, Indian and Pacific oceans and in deeper waters (2100 m, Ramil & Vervoort, 1992);

Koellikerina has a tropical or subtropical distribution, with the exception of K. massi, whose type locality is the McMurdo Strait, in Antarctica, and apparently prefers cold waters (-0.4°C to -1.5°C; Browne, 1910; Moteki et al., 2010). The genus occurs in depths up to 100 m (e.g. Petersen & Vannucci, 1960; Kawamura & Kubota, 2005; Schuchert, 2007);

Millardiana is restricted to Neotropical surface waters (<25 m; Calder, 1988) of the Caribbean Atlantic Ocean and ocean salinity (ca. 36.5, Calder, 1993);

Nemopsis is found in subtropical and cold temperate waters of the north Atlantic and Pacific oceans (Calder, 1971; Schuchert, 2007; Mendoza-Becerril et al., 2009);

Nubiella is intertropical in the Atlantic, Pacific and Indian oceans, usually less than 100 m depth (Segura-Puertas, 1980; Xu et al., 2009);

Pachycordyle is found in the north Atlantic and Pacific oceans, except for P. navis found in the Indian Ocean near South Africa, at depths between the surface and 30 m (Calder, 1991; Kramp, 1959b);

Parawrightia is found in northern and southern tropical waters of the western Atlantic and sub equatorially in the eastern Indian Ocean, at depths of 0-12 m (Kelmo & Santa-Isabel, 1998; Grohmann et al., 2003), and salinity of 36.5 (Calder, 1993);

Rhizorhagium has a wide latitudinal distribution in all oceans, with the majority of records from sub polar regions, at depths to 890 m (Schuchert, 2007);

Silhouetta is tropical in the Atlantic, Pacific and Indian oceans, and also in the Caribbean Sea, at a maximum depth of 30 m (Millard & Bouillon, 1973), and salinity of 36.5 (Calder, 1993);

Thamnostoma is common in warm tropical waters, including reefs in the Atlantic, Pacific and Indian Oceans, at depths of up to 100 m (Goy, 1979; Riera et al., 1986; Segura-Puertas, 1991);

Velkovrhia is the only genus restricted to fresh waters and caverns at up to 1830 m altitude (Tvrtković & Veen, 2006) near the Adriatic Sea.

Modeling of ecological niche for a total of 25 species (with a minimum of 10 location records) resulted in AUC values >0.81, which indicates that classifications were good to excellent. In general, chlorophyll is the most important variable in 69% of the models, with phosphates important in 17%, temperature in 10% and salinity in 3%. The Jackknife test indicated that chlorophyll (implicating high primary productivity) is the greatest contributor (gain) to the models (Table 3).


Table 3. Modeled classification for distribution of the 25 valid species with >10 records.


These models suggest five possible patterns to describe potential latitudinal and longitudinal limits for species distributions: equatorial-tropical, tropical-subtropical, subtropical-subpolar, subtropical-polar and widespread (from the equator to subpolar waters; Table 3, Figs. 6-10). The subtropical-polar category dominates, with 31% of the species and includes peaks in species richness. Coastal species are also more abundant, with 90% of the species (Table 3). Predictions of distributions from the models concur with those observed in most life-phases in the Bougainvilliidae. However, for the species B. vestita, B. carolinensis (polyp), B. fulva, B. muscus (polyp), B. rugosa, G. franciscana, N. alvarinoae and R. roseum some occurrence points do not correspond to those predicted as most adequate.


Figure 6. Potential distributions (as shades of blue indicating probabilities) from the model for equatorial-tropical species: a) Bougainvillia fulva-medusa, b) Bougainvillia niobe-medusa, c) Bougainvillia platygaster-medusa, d) Nubiella alvarinoae-medusa, e) Koellikerina multicirrata-medusa and f) Parawrightia robusta-polyp. Sampling locations are indicated by red dots.


Figure 7. Potential distributions (as shades of blue indicating probabilities) from the model for tropical-subtropical species: a) Bougainvillia muscus-medusa, b) Bougainvillia muscus-polyp and c) Nemopsis bachei-medusa. Sampling locations are indicated by red dots.


Figure 8. Potential distributions (as shades of blue indicating probabilities) from the model for subtropical-subpolar species: a) Bougainvillia carolinensis-medusa, b) Bougainvillia carolinensis-polyp, c) Bougainvillia macloviana-medusa, d) Bougainvillia principis-medusa and e) Bougainvillia pyramidata-polyp. Sampling locations are indicated by red dots.


Figure 9. Potential distributions (as shades of blue indicating probabilities) from the model for subtropical-polar species: a) Bougainvillia britannica-medusa, b) Bougainvillia muscoides-medusa, c) Bougainvillia muscoides-polyp, d) Bougainvillia superciliaris-medusa, e) Bougainvillia superciliaris-polyp, f) Dicoryne conferta-polyp, g) Dicoryne conybearei-polyp, h) Garveia nutans-polyp and i) Rhizorhagium roseum-polyp. Sampling locations are indicated by red dots.


Figure 10. Potential distributions (as shades of blue indicating probabilities) from the model for widely distributed species: a) Bimeria vestita-polyp, b) Bougainvillia rugosa-polyp, c) Garveia franciscana-polyp, d) Garveia gracilis-polyp, e) Koellikerina fasciculata-medusa and f) Pachycordyle napolitana-polyp. Sampling locations are indicated by red dots.



Considerations on global knowledge of the Bougainvilliidae

In the Atlantic Ocean, the most extensive studies were carried out in the northeast Atlantic and found a total of 28 species when including the Mediterranean (Motz-Kossowska, 1905; Stechow, 1919; Bouillon et al., 2004); Helgoland (Hartlaub, 1911), western Sweden (Rees & Rowe, 1969), Macaronesia, Mauritania, Morocco (Vervoort, 2006), Europe in general (Schuchert, 2007) and France, adjacent to the English Channel (Le Mao, 2009). In the northwest Atlantic, a total of30 species were recorded in specific places, such as Canada (Fraser, 1944), the United States and Bermuda (Calder, 1971, 1988, 1993), the Bahamas (Bigelow, 1918), Puerto Rico (Wedler & Larson, 1986), Mexico (Segura-Puertas, 1992). It is evident, that this ocean has the greatest number of publications on this family, which is a reflection of the greater number of specialists in the region (e.g., Bigelow, Bouillon, Calder, Kramp, Mayer, Russell). The Bougainvilliidae are less well known in the southern Atlantic. Three species are reported from southwest Africa (Pagès et al., 1992). Comparatively, the southwestern Atlantic has been better studied, with inventories of hydromedusae (Ramírez & Zamponi, 1981; Bouillon, 1999; Migotto et al., 2002; Genzano et al., 2008, Nogueira Jr. et al., 2013) carried out from the primary literature (e.g., Haeckel, 1879; Vannucci, 1951, 1957; Vannucci & Tundisi, 1962; Kramp, 1957, 1959a; Alvariño, 1968) and by examining plankton samples, with a total of 12 species being reported.

Despite the fewer studies in the Pacific Ocean, the number of species (82) is larger than any other area. There are 11 species in the Bismarck Sea (Bouillon, 1980), 12 in New Zealand (Schuchert, 1996) and 17 along the coast of China (Xu & Huang, 2004). In China, during the last decade, many more species have been identified, mostly in the genus Nubiella, as a consequence of which the diversity of Bougainvilliidae is increasing in a latitudinal band of 30-40°N. The best-studied regions of the Pacific are Canada (e.g., Foerster, 1923; Brinckmann-Voss, 1996), United States (e.g., Clarke, 1876; Nutting, 1901; Torrey, 1902; Calder, 2010), Ecuador (e.g., Fraser, 1938) and Chile (e.g., Galea, 2007; Palma et al, 2007a, 2007b; Villenas et al., 2009; Bravo et al., 2011; Palma et al, 2011).

In the Indian Ocean, two studies had the greatest sampled areas (Kramp, 1965; Millard 1975), in which 56% of the total, currently known fauna were reported. In the Arctic Ocean, the first studies were in the 1960s (Hand & Kan, 1961, EUA-Alaska; Naumov, 1969, Russia), followed by Zelickman (1972, Russia) and Ronowicz (2007, Norway). And finally, in the Southern, the expeditions of the 1900-1910's were most important (e.g., Hickson & Gravely, 1907; Browne, 1910; Vanhoffen, 1910).

Considerations about the distribution of the Bougainvilliidae

For a comprehensive analysis of aquatic species distributions, one must consider the three dimensions: latitude, longitude and depth (Miranda & Marques, 2011; Bentlage et al., 2013). In the case of the Bougainvilliidae, due to lack of information, those three dimensions are not always known, as most studies have focused on the epipelagic zone (0-200 m), as it is typical for Medusozoa (Marques et al., 2003; Segura-Puertas et al., 2003). The epipelagic is the zone in which we expect to find most species because it is known to be most diverse for zooplankton (Angel, 1994) as well as benthic organisms (Genzano et al., 2009).

Despite the lack of data, we carried out a distributional analysis in two dimensions. In latitude, the first dimension, the number of species declines (from 44 to 3) with increasing latitude, as is the case with respect to other groups of planktonic (Boltovskoy et al., 1999; Genzano et al., 2008) and benthic (Fautin et al. , 2013) invertebrates. Longitudinally, the second dimension, we find that the majority of species are coastal, which shows the importance of substrates for development during the polyp phase, even for those species in which only the medusa phase is known. This suggests that the ancestral niche that was for species with both polyp and medusa phases has been maintained, despite subsequent evolutionary modifications with respect to dispersal and development.

As mentioned, models were somewhat limited by the sparse available information, both about species distribution and environmental variables. Also, alternating generations (found in some genera during their life cycles) are a problem for this type of analysis, because there are no methods that consider the influence of dispersal along with biotic and abiotic factors on each developmental phase (Pearson & Dawson, 2003). Regardless of these potential problems, the distributions generated by the models appear to be robust, in that the predicted distributions are very similar to those observed today. In the few cases with apparent incongruence's between observed and predicted distributions, these may not be errors but they rather may represent samples from sink populations of Bougainvilliidae (as in the cubomedusa Chironex fleckeri, Bentlage et al., 2009). These kinds of populations tend to exist temporarily in marginal habitats where they may often disappear if dispersal does not supply more individuals, such as when mortality exceeds natality (Dias, 1996; Palmer et al., 1996).

Hydrozoans distribution are known to be influenced by a variety of environmental factors (Arai, 1992), yet most models suggest that chlorophyll is the most important. Chlorophyll plays an important role and is a proxy of high primary productivity and nutrient-rich waters for some regions, hence indicating abundance of food resources for pelagic and benthic communities (Acha et al., 2004). It is also evident that other biotic factors can be important, yet they were not considered in the analysis, such as epibiosis (e.g., Oliveira & Marques, 2007, 2011), and those associated with human activities (e.g., Rocha et al., 2013).

Temperature is important for the distribution of some species in the genera Dicoryne and Garveia. Dicoryne occurs where temperatures oscillate between 2.7-23.6°C (Okolodkov, 2010), such as <20oC for D. conferta (Broch, 1916), while Garveia is found in waters with temperatures >25°C (Okolodkov, 2010). Temperature is often considered a key factor in determining the distribution of benthic (Boltovskoy & Wright, 1976) and planktonic (Beaugrand et al., 2013) organisms. Of course, local and historical factors are considered to be important as well.

The potential distribution for some species includes regions in which important studies were carried out without noting the presence of those species. This may be due to the fact that modeling does not include biological interactions, geographic barriers and history, which clearly are also important and may explain why species seldom occupy all favorable environments (Anderson & Martinez-Meyer, 2004). An example in point is found in the latitudinal distribution of B. superciliaris and Nemopsis bachei. Both have been found in the northern hemisphere and their potential distribution due to modeling includes both hemispheres, which suggests dispersal limitation. Specifically, N. bachei is considered to be euryhaline (Calder, 1971) (salinity 335, Denayer, 1973; Mendoza-Becerril et al., 2009) and usually present at temperatures <26°C (Cronin et al., 1962; Denayer, 1973; Marshalonis & Pinckney, 2007).

Of the species with sufficient information for polyp and medusa phases, models can be particular to the life phase. In two species (B. carolinensis and B. muscus) patterns are similar for both phases, and in others, one phase generally has a larger predicted distribution. In B. muscus the medusa phase has the greatest predicted distribution while in B. superciliaris it is the polyp phase. Similarly, in at least B. superciliaris, temperature is most important for the polyp phase, while chlorophyll is most important for the medusa phase. This reinforces the idea that the influence of the environment can vary by life phase and so coupling of phases is not trivial. As a consequence, modelling without respect to life phase, for organisms with distinct phases, may overlook very important and complex patterns. Adding to uncertainty is the dispersal potential of each phase, with some considering the medusa phase as the principal dispersal agent, which is reflected by a widespread distribution, including pelagic (Bouillon, 1981; Leclère et al., 2009). This is exemplified in B. muscoides. On the other hand, some researchers suggest the contrary (Cornelius, 1992), as seen in B. superciliaris. Most likely is that while some patterns predominate, there will always be exceptions.

The lack of information from a variety of regions is also clear in this analysis, especially in the southeastern Atlantic, southern Gulf of Mexico, Central America, southwest Pacific and northeastern Indian Ocean. These regions also have relatively high AUC values (0.65-0.99) for several species and would be interesting places to increase sampling effort. However, the number of studies seems to be declining with respect to the polyp phase (Table 2). This trend and the species accumulation curves illustrate that more studies are needed, especially of benthic and planktonic faunas and at a variety of depths and aquatic environments, in addition to revisions based on morphological, reproductive and molecular characters to respond questions of evolutionary and geographic patterns.


We thank Peter Schuchert and Luis Martell for their literature. Thanks to colleagues in the Marine Evolution Laboratory, USP, for their stimulating discussions and suggestions, and to two reviewers of previous versions of this manuscript for improving its quality. This study was supported by fellowships from CAPES/CNPq - IEL National - Brazil (Proc. 61011002011) and PROCAD, CNPq (Proc. 490348/2006-8, 304720/2009-7, 562143/2010-6, 563106/2010-7, 477156/2011-8) and São Paulo Research Foundation (FAPESP) (Proc. 2004/09961-4, 2006/58226-0, 2010/52324-6, 2010/06927-0, 2011/50242-5). This is a contribution of the NP-BioMar, USP. James J. Roper translated the text from the original Spanish.



Acha, E.M., H. Mianzan, R.A. Guerrero, M. Favero & J. Bava. 2004. Marine fronts at the continental shelves of austral South America physical and ecological processes. J. Mar. Syst., 44: 83-105.         [ Links ]

Allman, G.J. 1871. Of the Gymnoblastic or tubularian hydroids: I The hydroida in general, II The genera and species of the Gymnoblastea. The Ray Society, London, 450 pp.         [ Links ]

Alvariño, A. 1968. Los quetognatos, sifonóforos and medusas en la región del atlántico ecuatorial bajo la influencia del Amazonas. An. Inst. Cienc. Mar Limnol. UNAM., 39: 41-76.         [ Links ]

Anderson, R.P. & E. Martínez-Meyer. 2004. Modeling species geographic distribution for preeliminary conservation distribution for preliminary with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv., 116: 167-179.         [ Links ]

Angel, M.V. 1994. Biodiversity of the pelagic ocean. Conserv. Biol., 7: 760-762.         [ Links ]

Appeltans, W., P. Bouchet, G.A. Boxshall, C. De Broyer, N.J. de Voogd, D.P. Gordon, B.W. Hoeksema, T. Horton, M. Kennedy, J. Mees, G.C.B. Poore, G. Read, S. Stohr, T.C. Walter & M.J. Costello. 2011 World Register of Marine Species. []. Reviewed: 3 November 2012.         [ Links ]

Arai, M.N. 1992. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. Mar., 56(2-3): 99-108.         [ Links ]

Ballard, L. & A. Myers. 1996. Seasonal changes in the vertical distribution of five species of the family Bougainvilliidae (Cnidaria: Anthomedusae) at Lough Hyne, south-west Ireland. Sci. Mar., 60(1): 69-74.         [ Links ]

Beaugrand, G., I. Rombouts & R. Kirby. 2013. Towards an understanding of the pattern of biodiversity in the oceans. Global Ecol. Biogeogr., 22: 440-449.         [ Links ]

Bentlage, B., A.T. Peterson & P. Cartwright. 2009. Inferring distributions of chirodropid box-jellyfishes (Cnidaria: Cubozoa) in geographic and ecological space using ecological niche modeling. Mar. Ecol. Prog. Ser., 384: 121-133.         [ Links ]

Bentlage, B., A.T. Peterson, N. Barve & P. Cartwright. 2013. Plumbing the depths: extending ecological niche modeling and species distribution modeling in three dimensions. Global Ecol. Biogeogr., DOI: 10:1111/geb.12049        [ Links ]

Bigelow, H.B. 1918. Some medusae and siphonophora from the western Atlantic. Bull. Mus. Com. Zool., 62: 363-442.         [ Links ]

Boltovskoy, E. & H. Wright. 1976. Recent Foraminifera. Junke Publishers, The Hague, 550 pp.         [ Links ]

Boltovskoy, D., M.J. Gibbons, L. Hatchings & D. Binet. 1999. General biological features of the South Atlantic zooplankton. In: D. Boltovskoy (ed.). South Atlantic zooplankton. Backhuys Publishers, Leiden, pp. 869-1098.         [ Links ]

Bouillon, J. 1980. Hydroméduses de la mer de Bismarck (Papouasie Nouvelle-Guinée). Partie III: Anthomedusae Filifera (Hydrozoa-Cnidaria). Cah. Biol. Mar., 21: 307-344.         [ Links ]

Bouillon, J. 1981. Origine et phylogenese des cnidaires et des hydropolypes-hydromeduses. Ann. Soc. Roy. Zool. Belgique, 1-4: 45-56.         [ Links ]

Bouillon, J. 1999. Hydromedusae. In: D. Boltovskoy (ed.). South Atlantic zooplankton. Backhuys Publishers, Leiden, pp. 385-465.         [ Links ]

Bouillon, J. & F. Boero. 2000. Phylogeny and classification of Hydroidomedusae. Thal. Salentina, 24: 5-296.         [ Links ]

Bouillon, J., M.D. Medel, F. Pagès, J.M. Gili, F. Boero & C. Gravili. 2004. Fauna of the Mediterranean Hydrozoa. Sci. Mar., 68: 5-438.         [ Links ]

Bouillon, J., C. Gravili, F. Pagès, J.M. Gili & F. Boero. 2006. An introduction to Hydrozoa. Publication Scientifiques du Museum, Paris, 591 pp.         [ Links ]

Bravo, V., S. Palma & N. Silva. 2011. Seasonal and vertical distributional patterns of medusae in Aysen region, southern Chile. Lat. Am. J. Aquat. Res., 39(2): 359-377.         [ Links ]

Brinckmann-Voss, A. 1996. Seasonality of hydroids (Hydrozoa, Cnidaria) from an intertidal pool and adjacent subtidal habitats at Race Rocks, off Vancouver Island, Canada. Sci. Mar., 60: 89-97.         [ Links ]

Brinton, E., A. Fleminger & D. Siegel-Causey. 1986. The temperate and tropical planktonic biotas of the Gulf of California. CalCOFi. Invest. Rep., 27: 228-266.         [ Links ]

Broch, H. 1916. Hydroida (Part I). The Danish Ingolf Exped., 5(6): 1-66.         [ Links ]

Browne, E.T. 1910. Coelenterata V. Medusae. National Antarctic Expedition 1901-1904. Nat. Hist. Zool. Bot., 5: 1-62.         [ Links ]

Calder, D.R. 1971. Hydroids and hydromedusae of southern chesapeake bay. Virginia Inst. Mar. Sci. Spec. papers Mar. Sci., 1: 1-109.         [ Links ]

Calder, D.R. 1988. Shallow-water hydroids of Bermuda. The Athecatae. Life Sci. Contrib., 148: 1-107.         [ Links ]

Calder, D.R. 1990. Seasonal cycles of activity and inactivity in some hydroids from Virginia and South Carolina, U.S.A. Can. J. Zool., 68(3): 442-450.         [ Links ]

Calder, D.R. 1991. Abundance and distribution of hydroids in a mangrove ecosystem at Twin Cays, Belize, Central America. Hydrobiologia, 216/217: 221-228.         [ Links ]

Calder, D.R. 1993. Local distribution and biogeography of the hydroids (Cnidaria) of Bermuda. Caribb. J. Sci., 29: 61-74.         [ Links ]

Calder, D.R. 2010. Some anthoathecate hydroids and limnopolyps (Cnidaria, Hydrozoa) from the Hawaiian Archipelago. Zootaxa, 2590: 1-91.         [ Links ]

Cartwright, P., N.M. Evans, C.W. Dunn, A.C. Marques, M.P. Miglietta, P. Schuchert & A.G. Collins. 2008. Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J. Mar. Biol. Assoc. UK., 88(8): 1663-1672.         [ Links ]

Clarke, S.F. 1876. The Hydroids of the Pacific Coast of the United States, south of Vancouver Island, with a report upon those in the museum of Yale College. Trans. Conn. Acad., 3: 249-268.         [ Links ]

Cornelius, P.F.S. 1992. Medusa loss in leptolid Hydrozoa (Cnidaria), hydroid rafting, and abbreviated life-cycles among their remote-island faunae: an interim review. Sci. Mar., 56: 245-261.         [ Links ]

Cronin, L.E., J.C. Daiber & E.M. Hulbert. 1962. Quantitative seasonal aspects of zooplankton in the delaware river estuary. Chesapeake Sci., 3(2): 63-93.         [ Links ]

Denayer, J.C. 1973. Trois méduses nouvellles ou peu connues des côtes françaises: Maeotias inexpectata Ostroumov, 1896, Blackfordia virginica Mayer Nemopsis bachei Agassiz, 1849. Cah. Biol. Mar., 14: 285-294.         [ Links ]

Dias, P.C. 1996. Sources and sinks in population biology. Trends Ecol. Evol., 11(8): 326-330.         [ Links ]

ESRI. 2010. ArcGIS10. Environmental systems research institute, New York.         [ Links ]

Fautin, D.G., L. Malarky & J. Soberón. 2013. Latitudinal diversity of sea anemones (Cnidaria: Actiniaria. Biol. Bull., 224: 89-98.         [ Links ]

Foerster, R.E. 1923. The Hydromedusae of the west coast of North America, with special reference to those of the Vancouver Islands Region. Cont. Can. Biol., 1: 219-277.         [ Links ]

Fraser, C.M. 1938. Hydroids of the 1934 Allan Hancock Pacific Expedition. Allan Hancock Pacific Exped., 4: 1-105.         [ Links ]

Fraser, C.M. 1944. Hydroids of the Atlantic coast of North America. University of Toronto Press, Toronto, 320 pp.         [ Links ]

Frost, J.R., C.A. Jacoby & M.J. Youngbluth. 2010. Behavior of Nemopsis bachei L. Agassiz, 1849 medusae in the presence of physical gradients and biological thin layers. Hydrobiologia, 645: 97-111.         [ Links ]

Galea, H. 2007. Hydroids and hydromedusae (Cnidaria, Hydrozoa) from the fjords region of southern Chile. Zootaxa, 1597: 1-116.         [ Links ]

Genzano, G.N. 1994. La comunidad hidroide del intermareal de Mar del Plata (Argentina), estacio-nalidad, abundancia and periodos reproductivos. Cah. Biol. Mar., 35: 289-303.         [ Links ]

Genzano, G.N., H.W. Mianzan & J. Bouillon. 2008. Hydromedusae (Cnidaria: Hydrozoa) from the temperate southwestern Atlantic Ocean: a review. Zootaxa, 1750: 1-18.         [ Links ]

Genzano, G.N., D. Giberto, L. Schejter, C. Bremec & P. Meretta. 2009. Hydroid assemblages from the southwestern Atlantic Ocean (34-42S). Mar. Ecol., 30: 33-46.         [ Links ]

Goy, J. 1979. Campagne de la Calypso au large des côtes atlantiques de l'Amérique du Sud (1961-1962)-35. Méduses. Result. Scient. Camp. Calypso, 11: 263-296.         [ Links ]

Grohmann, P.A., C.C. Nogueira & V.M.P.A. da Silva. 2003. Hydroids (Cnidaria, Hydrozoa) collected on the continental shelf of Brazil during the Geomar X Oceanographic Operation. Zootaxa, 299: 1-19.         [ Links ]

Haeckel, E. 1879. Das System der Medusen, Erster Theil einer Monographie der Medusen (Craspedotae). Denkschr. med. naturw. Ges. Jena, 1:1-360.         [ Links ]

Hand, C. & L.B. Kan. 1961. The Medusae of the Chukchi and Beaufort Seas of the Arctic Ocean including the description of a new species of Eucodonium (Hydrozoa: Anthomedusae). Arctic. Inst. North Am. Tech. Pap., 6: 5-23.         [ Links ]

Hartlaub, C. 1911. XII Craspedote Medusen. I. Teil. 2 Lief. Familie III Margelidae. Nord. Plankton, 6: 137-235.         [ Links ]

Hickson, S.J. & F.H. Gravely. 1907. Hydroid zoophytes, National Antarctic Expedition, 1901-1904. Nat. Hist., 3: 1-34.         [ Links ]

Hirohito, Emperor of Japan. 1988. The hydroids of Sagami Bay. Biological Laboratory Imperial Household, Tokyo, pp. 1-179.         [ Links ]

Kawamura, M. & S. Kubota. 2005. Two species of Koellikerina medusae (Cnidaria, Hydrozoa, Anthomedusae) from Japan. Publ. Seto Mar. Biol. Lab., 40(3-4): 121-130.         [ Links ]

Kelmo, F. & L.M. Santa-Isabel. 1998. Theathecatae hydroids (Cnidaria, Hydrozoa) from Northern Bahia, Brazil. Rev. Biol. Trop., 46(Suppl. 5): 61-72.         [ Links ]

Kramp, P.L. 1957. Hydromedusae from the Discovery collections. Discovery Rep., 29: 1-128.         [ Links ]

Kramp, P.L. 1959a. The Hydromedusae of the Atlantic Ocean and adjacent waters. Dana Rep., 46: 1-283.         [ Links ]

Kramp, P.L. 1959b. Some new and little-know Indo-Pacific Medusae. Vidensk. Meddr. Dansk. Naturh. Foren., 120: 223-259.         [ Links ]

Kramp, P.L. 1961. Synopsis of the Medusae of the world. J. Mar. Biol. Assoc. UK., 40: 7-469.         [ Links ]

Kramp, P.L. 1965. The hydromedusae of the Pacific and Indian Oceans. Dana Rep., 63: 1-162.         [ Links ]

Leclère, L., P. Schuchert, C. Cruaud, A. Coloux & M. Manuel. 2009. Molecular phylogenetics of Thecata (Hydrozoa, Cnidarian) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Syst. Biol., 58: 1-18.         [ Links ]

Le Mao, P. 2009. Inventaire de la biodiversité marine dans le golfenormano-breton, Cnidaires. IFREMER, Département des Laboratoires Environnementet Ressources Aquacoles, Finistére Bretagne Nord, 66 pp.         [ Links ]

Marques, A.C. & A.G. Collins. 2004. Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr. Biol., 123(1): 23-42.         [ Links ]

Marques, A.C. & A.E. Migotto. 2004. Hidrozoários (Cnidaria) marinhos bentônicos da estação ecológica Juréia-Itatins. In: O.A.V. Marques & W. Duleba (eds.). Estação ecológica Juréia-Itatins, ambiente físico, flora e fauna. Holos Editora, Ribeirão Preto, pp. 172-178.         [ Links ]

Marques, A.C., A.C. Morandini & A.E. Migotto. 2003. Synopsis of knowledge on Cnidaria Medusozoa from Brazil. Biota Neotrop., 3: 1-18.         [ Links ]

Marques, A.C., H. Mergner, R. Höinghaus & W. Vervoort. 2000. Bimeria vestita (Hydrozoa: Anthomedusae: Bougainvilliidae) senior synonym of Eudendrium vestitum (Hydrozoa: Anthomedusae: Eudendriidae). Zoöl. Meded. Leiden, 73(22): 321-325.         [ Links ]

Marshalonis, D. & J.L. Pinckney. 2007. Respiration rates of dominant hydromedusae in the North Inlet tidal estuary during winter and summer. J. Plankton Res., 29(12): 1031-1040.         [ Links ]

Mayer, A.G. 1910. Medusae of the world. Carnegie Institution Washington, Washington, pp. 1-735.         [ Links ]

Mendoza-Becerril, M.A., A. Ocaña-Luna, M. Sánchez-Ramírez & L. Segura-Puertas. 2009. Primer registro de Phialella quadrata and ampliación del límite de distribución de ocho especies de hidromedusas (Hydrozoa) en el Océano Atlántico Occidental. Hidrobiológica, 19(3): 257-267.         [ Links ]

Metz, C.E. 1986. ROC methodology in radiologic imaging. Invest. Radiol., 21: 720-733.         [ Links ]

Migotto, A.E. 1996. Die benthic shallow-water hydroids (Cnidaria, Hydrozoa) of the Ocean of São Sebastião, Brazil, including a checklist of Brazilian hydroids. Zool. Verh., 306: 1-125.         [ Links ]

Migotto, A.E., A.C. Marques, A.C. Morandini & F.L. Silveira. 2002. Checklist of the Cnidaria Medusozoa of Brazil. Biota Neotrop., 2: 1-31.         [ Links ]

Millard, N.A.H. 1975. Monograph on the Hydroida of Southern Africa. Ann. S. Afr. Mus., 68: 1-513.         [ Links ]

Millard, N.A.H. & J. Bouillon. 1973. Hydroids from the Seychelles (Coelenterata). Ann. Mus. R. Afr. Cent. Sci. Zool., 206(8): 1-106.         [ Links ]

Miranda, T.P. & A.C. Marques. 2011. Abordagens atuais em biogeografia marinha. Rev. Biol., 7: 41-48.         [ Links ]

Moteki, R.T.M., A.O.N. Horimoto, Y. Tanaka & T. Ishimaru. 2010. Structure of the pelagic cnidarian community in Lützow-Holm Bay in the Indian sector of the Southern Ocean. Polar Sci., 4: 387-404.         [ Links ]

Motz-Kossowska, S. 1905. Contribution à la connaissance des hydraires de la Méditerranée occidentale. I. Hydraires gymnoblastiques. Arch. Zool. Exp. Gén. Sér., 4. T. pp. 39-98.         [ Links ]

Naumov, D.V. 1969. Hydroids and Hydromedusae of the USSR. Isr. Prog. Sci. Trans. Jerusalem, 70: 1-631.         [ Links ]

Nogueira Jr., M., C.S. Rodriguez, H. Mianzan, M.A. Haddad & G. Genzano. 2013. Description of a new hydromedusa from the southwestern Atlantic Ocean, Bougainvillia pagesi sp. nov. (Cnidaria, Hydrozoa, Anthoathecata). Mar. Ecol., 34(1): 113-122.         [ Links ]

Nutting, C.C. 1901. Papers from the Harriman Alaska expedition. XXI. The Hydroids. Proc. Wash. Acad. Sci., 3: 157-216.         [ Links ]

Okolodkov, Y.B. 2010. Biogeografía Marina. Universidad Autónoma de Campeche, Campeche, 217 pp.         [ Links ]

Oliveira, O.M.P. & A.C. Marques. 2007. Epiphytic hydroids (Hydrozoa: Anthoathecata and Leptothecata) of the world. Check List, 3(1): 21-38.         [ Links ]

Oliveira, O.M.P. & A.C. Marques. 2011. Global and local patterns in the use of macrophytes as substrata by hydroids (Hydrozoa: Anthoathecata and Leptothecata). Mar. Biol. Res., 7: 786-795.         [ Links ]

Pagès, F., J.M. Gili & J. Bouillon. 1992. Medusae (Hydrozoa, Scyphozoa, Cubozoa) of the Benguela Current (southeastern Atlantic). Sci. Mar., 56: 1-64.         [ Links ]

Palma, S., P. Apablaza & N. Silva. 2007a. Hydromedusae (Cnidaria) of the Chilean southern channels (from the Corcovado Gulf to the Pulluche-Chacabuco Channels). Sci. Mar., 71(1): 65-74.         [ Links ]

Palma, S., P. Apablaza & D. Soto. 2007b. Diversity and aggregation áreas of planktonic cnidarians of the southern channels of Chile (Boca del Guafo to Pulluche Channel). Invest. Mar, Valparaíso, 5(2): 71-82.         [ Links ]

Palma, S., N. Silva, M.C. Retamal & L. Castro. 2011. Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloé Interior Sea, Chile. Cont. Shelf Res., 31: 260-271.         [ Links ]

Palmer, M.A., J.D. Allan & C.A. Butman. 1996. Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends Ecol. Evol., 11(8): 322-326.         [ Links ]

Pearson, R.G. & T.P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr., 12: 361-371.         [ Links ]

Péron, F. & C.A. Lesueur. 1810. Tableau des caractères génériques et spécifiques de toutes les espèces de méduses connues jusqu'à ce jour. Ann. Mus. Hist. Nat. Paris, 14: 325-366.         [ Links ]

Petersen, K.W. & M. Vannucci. 1960. The life cycle of Koellikerina fasciculata (Anthomedusae, Bougain-villiidae). Pub. Stazione Zool. Napoli, 31(3): 473-492.         [ Links ]

Petrova, E.A., T.N. Dautova & L.S. Shkoldina. 2011. Species composition, seasonal dynamics of quantities and spatial distribution of hydromedusae (Cnidaria: Hydrozoa) in Vostok Bay of the Sea of Japan. Russ. J. Mar. Biol., 37(2): 111-122.         [ Links ]

Phillips, S.J., R.P. Anderson & R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model., 190: 231-259.         [ Links ]

Ramil, F. & W. Vervoort. 1992. Report on the Hydroida collected by the "BALGIM" expedition in and around the Strait of Gibraltar. Zool. Verh., 277(7): 1-262.         [ Links ]

Ramírez, F.C. & M.O. Zamponi. 1981. Hydromedusae. In: D. Boltovskoy (ed.). Atlas del zooplancton del Atlántico Sudoccidental and métodos de trabajo con el zooplancton marino. Publicación Especial del Instituto Nacional de Investigación and Desarrollo Pesquero, Mar de Plata, pp. 443-469.         [ Links ]

Rees, W.J. & M. Rowe. 1969. Hydroids of the Swedish west coast. Acta R. Soc. Sci. Litt. Gothobg. Zool., 3: 1-23.         [ Links ]

Riera, T., J.M. Gili & F. Pagès. 1986. Estudio cuantitativo y estacional de dos poblaciones de cnidarios planctónicos frente a las costas de Barcelona (Mediterráneo occidental): ciclos entre 1966-1967 and 1982-1983. Misc. Zool., 10: 23-32.         [ Links ]

Rocha, R.M., L.M. Vieira, A.E. Migotto, A.C.Z. Amaral, C.R.R. Ventura, C.S. Serejo, F.B. Pitombo, K.C. Santos, L.R.L. Simone, M. Tavares, R.M. Lopes, U. Pinheiro & A.C. Marques. 2013. The need of more rigorous assessments of marine species introductions: a counter example from the Brazilian coast. Mar. Poll. Bull., 67: 241-243.         [ Links ]

Ronowicz, M. 2007. Benthic hydroids (Cnidaria: Hydrozoa) from Svalbard waters-biodiversity and distribution. J. Mar. Biol. Assoc. UK., 87: 1089-1094.         [ Links ]

Russell, F.S. 1953. The Medusae of the British Isles. Cambridge University Press, Cambridge, pp. 1-530.         [ Links ]

Schuchert, P. 1996. The marine fauna of New Zealand: athecate hydroids and their medusae (Cnidaria: Hydrozoa). New Zeal. Oceanogr. Inst. Mem., 106: 1159.         [ Links ]

Schuchert, P. 2007. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Filifera Part 2. Rev. Suisse Zool., 114: 195-396.         [ Links ]

Segura-Puertas, L. 1980. Two new species of Lizzia (Hydrozoa: Anthomedusae) from the eastern tropical Pacific. Proc. Biol. Soc. Wash., 93(3): 515-522.         [ Links ]

Segura-Puertas, L. 1991. New records of two species of hydromedusae (Cnidaria) from the Mexican Caribbean. An. Inst. Cienc. Mar Limnol. Univ. Nac. Auton. Mex., 18: 133-135.         [ Links ]

Segura-Puertas, L. 1992. Medusae (Cnidaria) from the Yucatan shelf and Mexican Caribbean. Bull. Mar. Sci., 51: 353-359.         [ Links ]

Segura-Puertas, L., E. Suárez-Morales & L. Celis. 2003. A checklist of the Medusae (Hydrozoa, Scyphozoa and Cubozoa) of Mexico. Zootaxa, 194: 1-15.         [ Links ]

Sokal, R. & J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological research. State University of New York at Stony Brook, New York, 887 pp.         [ Links ]

Stechow, E. 1919. Zur Kenntnis der hydroidenfauna des mittelmeeres, Amerikas und anderer Gebiete. Zool. Jahrb. Syst., 42: 1-172.         [ Links ]

Torrey, H.B. 1902. The Hydroida of the Pacific coast of North America. Univ. Calif. Publ. Zool., 1: 1-104.         [ Links ]

Tvrtković, N. & P. Veen. 2006. The dinaric alps rare habitats and species, a nature conservation Project in Croatia. Hrvatski prirodoslovnimuzej, Zagreb, pp. 167.         [ Links ]

Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur & O. De Clerck. 2011. Bio-ORACLE: a global environmental dataset for marine species distribution modeling. Global ecology and biogeo-graphy. []. Reviewed: 20 octubre 2012.         [ Links ]

Vanhöffen, E. 1910. Die Hydroiden der Deutschen Südpolar-Expedition 1901-1903. Deuts. Südpolar Exp., 11: 269-340.         [ Links ]

Vannucci, M. 1951. Distribuição dos Hydrozoa até agora conhecidos nas costas do Brasil. Bol. Inst. Ocean., 2: 105-124.         [ Links ]

Vannucci, M. 1957. On Brazilian Hydromedusae and their distribution in relation to different water masses. Bol. Inst. Ocean., 8: 23-109.         [ Links ]

Vannucci, M. & J. Tundisi. 1962. Las medusas existentes en los museos de La Plata and Buenos Aires. Comun. Mus. Argent. Cienc. Nat. Bernardino Rivadavia, 3(8): 201-215.         [ Links ]

Vervoort, W. 2006. Leptolida (Cnidaria: Hydrozoa) collected during the CANCAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, The Netherlands [Anthoathecata, various families of Leptothecata and addenda]. Zool. Meded. Leiden, 80-1: 181-318.         [ Links ]

Villenas, F., D. Soto & S. Palma. 2009. Cambios interanuales en la biomasa y biodiversidad de zooplancton gelatinoso en aguas interiores de Chiloé, sur de Chile (primavera 2004 y 2005). Rev. Biol. Mar. Oceanogr., 44(2): 309-324.         [ Links ]

Wedler, E. & R. Larson. 1986. Athecate hydroids from Puerto Rico and the Virgin Islands. Stud. Neotrop. Fauna E., 21: 69-101.         [ Links ]

Xu, Z.Z. & J.Q. Huang. 2004. A survey on Anthomedusae (Hydrozoa: Hydroidomedusae) from the Taiwan Strait with description of new species and new combinations. Acta Oceanol. Sin., 23: 549-562.         [ Links ]

Xu, Z.Z. & J.Q. Huang. 2006. On new genus, species and record of Laingiomedusae and Anthomedusae in Fujian coast (Cnidaria, Hydroidomedusae). J. Xiamen Univ. Nat. Sci., 45: 233-249.         [ Links ]

Xu, Z.Z., J.Q. Huang & G. Liu. 2007a. On new species and records of Hydroidomedusae from the Changjiang River Estuary and its adjacent waters. Acta Oceanol. Sin., 26(1): 77-83.         [ Links ]

Xu, Z.Z., J.Q. Huang & D. Guo. 2007b. A survey on Hydroidomedusae from the upwelling region of southern part of the Taiwan Strait of China I, On new species and records of Anthomedusae. Acta Oceanol. Sin., 26(5): 66-75.         [ Links ]

Xu, Z.Z., J.Q. Huang, M. Lin & D. Guo. 2009. Study on genus Nubiella from the Taiwan Strait and its adjacent waters, China (Filifera, Bougainvilliidae). Acta Zoot. Sin., 34(1): 111-118        [ Links ]

Zelickman, E.A. 1972. Distribution and ecology of the pelagic Hydromedusae, Siphonophores and Ctenophores of the Barents Sea, based on perennial plankton collection. Mar. Biol., 17: 256-264.         [ Links ]


Received: 21 March 2013; 4 October 2013


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons