Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
Citado por Google
-
Similares en SciELO
Similares en Google
Compartir
Revista Facultad de Ingeniería - Universidad de Tarapacá
versión On-line ISSN 0718-1337
Rev. Fac. Ing. - Univ. Tarapacá v.12 n.1 Arica mayo 2004
http://dx.doi.org/10.4067/S0718-13372004000100007
REVISTA FACULTAD DE INGENIERIA, U.T.A. (CHILE), VOL. 12 Nº1, 2004, pp. 49-57 QUIROSOLITONES RCP Y LCP EN ÓPTICA Y MICROONDAS EN RÉGIMEN NORMAL Y DE METAMATERIAL Mario Zamorano L.1 Héctor Torres S.1 1 Universidad de Tarapacá, Departamento de Electrónica, Casilla 6-D, Arica-Chile, zamorano@uta.cl, htorres@uta.cl RESUMEN En este artículo se presenta la solución de las ecuaciones de Maxwell para pulsos electromagnéticos de polarización circular a la derecha (RCP) y de polarización circular a la izquierda (LCP) en régimen normal y de metamaterial. El medio de propagación corresponde a un medio dispersivo, quiral y no lineal. El efecto quiral se caracteriza a través del formalismo de Born-Fedorov y la no-linealidad considerada es del tipo Kerr. La simulación de los modelos presentados se realiza mediante el método split-step de Fourier y los resultados obtenidos muestran que para ambos tipos de pulsos, RCP y LCP, hay un efecto compensador entre la atenuación del medio y el efecto quiral. Palabras claves: Ecuaciones de Maxwell, quiralidad, polarización circular, metamaterial. ABSTRACT This paper presents the solution of Maxwell´s equations for electromagnetic pulses with right circular polarization (RCP) and left circular polarization (LCP) in normal and metamaterial regimes. The propagating medium is dispersive, chiral and nonlinear. The chirality effect is characterized through Born-Fedorov formalism. The nonlinearity used is of a Kerr type. Models simulation is carried out through split-step Fourier method and the results show that for both types of pulses, there is a compensating, effect between the medium attenuation and the chiral factor. Keywords: Maxwell equations, chirality, circularly polarization, metamaterial. REFERENCIAS [1] Born and K. Hang, "Dynamical Theory of Crystal Lattice", Clarendon Oxford, 1954. [ Links ] [2] V.M. Agranovich, V.L. Ginzburg, "Crystal Optics with Spatial Dispersion and Excitons", Wiley, London, 1984. [ Links ] [3] A. Lakhtakia, "Beltrami Fields in Chiral Media", Word Scientific, Singapore, 1994. [ Links ] [4] I.V. Lindell, et al, "Electromagnetic Waves in Chiral and Bi-isotropic Media", Artech House. Second Edition, 2000. [ Links ] [5] A. Lakthakia; Selected Papers on Natural Optical Activity, SPIE Milestones Series Vol. MS515, SPIE, Bellingham, WA. 1991. [ Links ] [6] H. Torres Silva, et al; "Electromagnetic Properties of a Chiral-Plasma", Pramana Journal Physics 48, 1, 1997. [ Links ] [7] H. Torres Silva; "Chiro-Plasma Surface Waves", Advances in Complex Electromagnetic Materials, Kruwer Academic Publishers, Netherlands, 249. [ Links ] [8] M. Zamorano, H. Torres; "Ecuación de Schrödinger para una Fibra Óptica Quiral", Revista Mexicana de Física, 46 (1), pp. 62-66, Feb. 2000. [ Links ] [9] M. Zamorano, H. Torres; "Solution of Schrödinger equation for a nonlinear Kerr medium with linear chiral activity and cubic anisotropy using the split-step Fourier method", Revista Facultad de Ingeniería, Vol. 8, Universidad de Tarapacá, Arica - Chile, 2001. [ Links ] [10] A. Fresnel Ann Chim Phys 28.147 (1825); Oeuvers complets 1.731, Paris, 1866. [ Links ] [11] P. Drude Lehrhuch der Optik (S Hirzel, Leipzig. 1900); English traslation: Handbook of Optics, Dover New York, 1959. [ Links ] [12] L. Boltzmann Pogg Ann Phys Chem Jubelband, 128, 1984. [ Links ] [13] K. F. Lindman Ann Phys Leipzig 63.621 (1920) 69.270, 1922. [ Links ] [14] S.F. Mason; "Molecular optical activity and the chiral discriminations", Cambridge University Press, Cambridge, 1982. [ Links ] [15] L.D. Barron; "Molecular light scattering and optical activity", Cambridge University Press Cambridge, 1982. [ Links ] [16] C. Oldano, M. Becchi; "Natural potical activity and liquid crystals", Pramana-J. Phys., Vol 53, Nº 1, pp. 131-143, July 1999. [ Links ] [17] A. Lakhtakya, et al, "Time-Harmonic Electromagnetic Fields in Chiral Media", Lecture Notes in Physics 335, Springer-Verlag, 1985. [ Links ] [18] G. Agrawal; "Non Linear Fiber Optics", Academic Press, 1995. [ Links ] [19] J.R. Smith, et al; "Composite medium with simultaneously negative permeability and permittivity", Phy. Rev. Lett., Vol 48, Nº 18, pp. 4184-4187, May 2000. [ Links ] [20] H. Born, et al; Bioelectromagnetics, Vol 18, pp. 187-189, 1997. [ Links ] [21] H.F. Guttman; Bioelectrochemistry, Ed. F. Guttman and H. Keyzer, Plenum, New York, 1986. [ Links ] [22] C. Henríquez; "Análisis y Simulación de la Propagación de Solitones Polarizados Circularmente en un Medio Quiral"; Memoria de Titulación Ing. Civil Electrónica, Universidad de Tarapacá, Arica-Chile, 2001. [ Links ] [23] C.G. Parazzoli, et al, "Experimental verification and simulation of negative index of refraction using Snells law", Phys. Rev. Lett., Vol 90, 107401, 2003. [ Links ] [24] R. Marquez, et al, "Role of bianisotropy in negative permeability and left-handed metamaterials", Physical Review B, Vol. 65, pp. 144440/1-6, 2002. [ Links ] [25] H. Torres, M. Zamorano; "Chiral Effect on Optical Soliton" The Journal Mathematics and Computers in Simulation, Vol. 62, pp. 149-161, 2003. [ Links ] [26] M. Zamorano, H. Torres, "Efecto de la quiralidad sobre solitones polarizados en un medio anisotropico", Rev. Mex. de Física, Vol. 49, (1) Feb. 2003. [ Links ] AGRADECIMIENTOS Este trabajo ha sido parcialmente financiado por los proyectos Fondecyt Nº 1040744 y UTA Nº 8721-03 y 8722-03. Recibido el 16 de julio de 2003, aceptado el 8 de marzo de 2004
|