SciELO - Scientific Electronic Library Online

 
vol.63 número3PROPERTIES AND MODIFICATION METHODS OF HALLOYSITE NANOTUBES: A STATE-OF-THE-ART REVIEWRECENT APPROACHES FOR THE SYNTHESIS OF HYBRID RESVERATROL MOLECULES AND THEIR BIOLOGICAL ACTIVITIES: A REVIEW índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Chilean Chemical Society

versión On-line ISSN 0717-9707

J. Chil. Chem. Soc. vol.63 no.3 Concepción  2018

http://dx.doi.org/10.4067/s0717-97072018000304126 

Article

A REVIEW ON DERIVATIVE UV-SPECTROPHOTOMETRY ANALYSIS OF DRUGS IN PHARMACEUTICAL FORMULATIONS AND BIOLOGICAL SAMPLES REVIEW

Vivekkumar K. Redasani*  1 

Priyanka R. Patel1 

Divya Y. Marathe1 

Suraj R. Chaudhari1 

Atul A. Shirkhedkar1 

Sanjay J. Surana1 

1Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (MS), India

ABSTRACT

The review article deals with theoretical aspects of Derivative UV-Spectrophotometry. The method gains significance using the first and second derivative of the transmission spectra with respect to wavelength. Generated optical derivatives are compared to the known numerical derivatives. The derivative spectra from 1st to 4th are consequently discussed. This provides valuable insight into the uses and limitations of this technique for chemical analysis. Measurement techniques and methods of obtaining derivative spectra are discussed. The degree of polynomial fit on the smoothness of derivative spectra and signal-to-noise ratio is described. Application of UV derivative spectrometry for determination of single and multicomponent analysis is shown. Derivative spectrophotometry possibly improves the selectivity and sensitivity of determination which has been illustrated.

Keywords: Derivative UV-Spectrophotometry; First Order Derivative spectra; Second Order Derivative spectra; Third Order Derivative spectra; Fourth Order Derivative spectra and area under curve

INTRODUCTION

Derivative UV-spectrophotometry is an analytical technique of enormous implication commonly in obtaining mutually qualitative and quantitative in order from spectra that are of unresolved bands, with respect to qualitative and quantitative analysis, it uses first or higher derivatives of absorbance in accordance with wavelength [1]. Derivative spectroscopy was originally brought in 1950s with its applicability in a lot of features, but because of its complication in producing derivative spectra via UV-Visible spectroscopy the method found less practice. The weakness was conquering in 1970s with microcomputers which gave derivative spectra in more specific, simple, rapid and reproducible way. This made to enlarge applicability of derivative method; Derivatization of spectra augments selectivity by eradicates spectral interferences [2-3].

Derivative Spectroscopy

It is a spectroscopic technique that differentiates spectra's mainly in IR, UV-Visible absorption and Fluorescence spectrometry [4]. The objective with which derivative methods used in analytical chemistry are:

  • Spectral differentiation

  • Spectral resolution enhancement

  • Quantitative analysis

Spectral differentiation

As a qualitative method that distinguish small variation between almost similar spectra's.

Spectral resolution enhancement

Overlapping spectral bands gets resolved to simply estimation the number of bands and their wavelengths.

Quantitative analysis

It facilitates multicomponent analysis and corrects the irrelevant background absorption. Derivative spectroscopy method forms the beginning of differentiation or resolution of overlapping bands; the vital characteristics of derivative process are that broad bands are suppressed relative to sharp bands [4].

Measurement Techniques of the Derivative Spectroscopy

Differentiation of a zero order spectrum of a combination of components shows the way to derivative spectrum of any order. There are many methods are used for discrimination of a spectrum viz., by analog or numeric method, spectral differentiation may be deliberate either graphically on paper or registered in a computer memory [5]. Measurement of derivative spectra value is achieved out by three methods viz. graphic measurement, numeric measurement, zero crossing technique

Graphic measurement

Graphic measurement is theoretical method for calculate the derivative spectra on paper, its manual method it suffer from disadvantage that it gives inaccurate results because the value can determined numerically can be abolish or diminish beyond restriction [5].

Numeric measurement

The method uses set of points where derivative values is carried out by estimating the derivative value at a given wavelength. It gives derivatives by spectral differentiation using suitable numerical algorithm [5].

Zero crossing technique

The method measures the derivative spectra at a particular wavelength, where the derivative crosses the point at zero line. Interference of one component in determination of other component can be eliminated by zero crossing technique [5].

Derivative Spectra

In quantitative analysis, derivative spectra enlarge difference between spectra to resolve overlapping bands [6]. The digital algorithm method called as Savitzky-Golay is most outstandingly referred for obtaining derivative spectra. In universal technique involves plotting the rate of change of the absorbance spectrum vs wavelength [7]. Derivative spectra can obtain by variety of experimental techniques; the differentiation can be done numerically even if the spectrum has been recorded digitally or in computerized readable form. When spectrum is scanned at a constant rate, real time derivative spectra can be recorded either by achieving the time derivative of the spectrum or by wavelength modulation [8]. Wavelength modulation device is used to record the derivative spectra, where a beam of radiation differs in wavelength by a small change (1-2 nm) and difference between the two readings is recorded, computerized method is widely used to obtain derivative curves.

Quantitatively for second or fourth order derivative curves, peak heights are measured of long-wave peak satellite or for short-wave peak satellite [9]. The degree of difficulty of derivative spectra increases with presence of satellite peaks. Second derivative spectra are represented by presence of two sharp peaks and troughs. The solvents have amazing effect over peaks [10]. On the basis of solvents polarity, peaks and troughs shifts either to shorter or longer wavelength (Fig. 1).

Figure 1 Derivative Spectra. 

The way of obtaining the derivative orders

Derivative spectroscopy accomplishes conversion of a normal or zero order spectrums to its first, second or higher derivative spectrum. It yields considerable changes in shape of derivative achieved. Appropriate selection of derivative order gives useful separation of overlapped signals. Criterion like signals height, their width and distance between maxima in basic spectrum is achieved by optimal derivative order, to attain wide spectrum bands it is expected to use low orders and for narrow spectral bands-higher orders. A Gaussian band represents an ideal absorption band gives clear idea about transformation occurring in the derivative spectra. Plotting absorbance versus wavelength gives a graph, showing peak with maxima and minima (also points of inflection) that is supposed to passed through zero on the ordinate [10] (Fig. 2).

Figure 2 Oder of Derivative Spectra. 

Zero order derivative spectrum

Zero order derivative is initial step of giving further derivatives i.e., zeroth order spectrum can give nth order derivative. In derivative spectroscopy, D0 spectrum i.e. zeroth order is a representative feature of normal absorption spectrum [12]. The 1st, 2nd, 3rd and 4th order derivative spectra can be obtained directly from the zeroth order spectrum. An increase in order of derivatives increases the sensitivity of determination [14]. If a spectrum is expressed as absorbance (A) as a function of wavelength (λ), the derivative spectra is given as,

A=f(λ),

First order derivative spectrum

Spectra obtained by derivatizing zero order spectrum once. It is a plot of change of absorbance with wavelength against wavelength10 i.e. rate of change of the absorbance with wavelength,

dA/dλ=f(λ)

Even if in derivatized form it is more complex than zero order spectrum. First order spectra passes through zero as λ max of the absorbance band.6 Absorbance band of first order derivative shows certain positive and negative band with maxima and minima [6]. By scanning the spectrum with a minimum and constant difference between two wavelengths, dual-wavelength spectrophotometer obtains first-derivative spectra [8].

Second order derivative spectrum

Derivatizing the absorbance spectrum twice gives this type of spectra [7]. It is a plot of curvature of absorption spectrum against wavelength [16].

d2A/dλ2=f(λ)

Second derivative has direct relation with concentration i.e. directly proportional. d2A/dλ2 must be large, large the ratio greater is the sensitivity [8]. The method is useful in obtaining atomic and gas molecular spectra.

Third order derivative spectrum

Unlike second order spectrum third derivative spectrum shows disperse function to that of original curve [11].

d3A/dλ3=f(λ)

Fourth-derivative spectrum

Fourth order is inverted spectrum of second order and has a sharper central peak than the original band, Narrow bands are selectively determined by fourth derivative (UV-high pressure) [9].

d4A/dλ4=f(λ)

Polynomial degree

Polynomial degree has a great impact on number of polynomial points rather than on shape of derivative [5]. The scope of polynomial is less; differentiation of spectra of half-width is used by low degree polynomials and that for spectra of small half -width by higher degree polynomials [5]. Distorted derivative spectrum is a result of inappropriate polynomial degree. In case of multicomponent analysis, the spectral differences of assayed compounds and their selective determination can be increased by the use of different polynomial degrees [2].

Signal-to-noise ratio

Derivative technique becomes difficult when used with higher orders that produce signal-to-noise worse [1]. The result is decrease in S/N with higher orders. The noise is responsible for sharpest features in the spectrum. There are increased demands on low-noise characteristics of the spectrophotometer by negative effect of derivatization on S/N.5 S/N can be improved prior to derivatization if spectrophotometer would scan spectra and average multiple spectra [6]. Best signal-to-noise ratio can be obtained by taking the difference between the highest maximum and the lowest minimum, but this leads to enhanced sensitivity to interference from other components [2]. Noise of signal is expressed by standard deviation σ. Standard deviation σ0 expresses the noise of normal spectrum of the absorbance of blank while standard deviation σn expresses nth order derivative that can be calculated by σ0 [1, 2].

Smoothing of spectra

Increase in signal-to-noise ratio generates many worse conditions, to lessen the condition or to decrease the high-frequency noise, technique is used viz; low-pass filtering or smoothing. Smoothing is an operation that is performed on spectra separately on each row of the data and acts on adjacent variables [14]. The noise can be lower significantly without loss of the signal of interest when variables are close to each other in the data matrix and contain similar information [12]. Derivative spectrum may be altered with a high degree of smoothing so, care must be taken [1, 6]. The smoothing effect depends upon two variables mainly on: (a) Frequency of smoothing and (b) the smoothing ratio i.e. ratio of width of the smoothed peak to the number M of data points [15].

Advantages and Disadvantages of Derivative UV-Spectrophotometry Advantages

UV Derivative Spectroscopy has increased sensitivity and selectivity. It has multiple advantages viz., single component analysis and simultaneous determination of several components in a mixture, determination of traces in matrix, protein and amino acid analysis, environmental analysis, identification of organic and inorganic compounds [5].

Specific benefits of derivative spectral analysis includes viz;

  • Even in small wavelength range, in presence of two or more overlapped peaks, absorbance bands can be identified.

  • In presence of strong and sharp absorbance peak, weak and small absorbance peak can be identified.

  • Broad absorbance spectrum gives clear idea about the particular wavelength at that maximum spectrum.

  • Even in presence of existed background absorption, the quantitative analysis can studied as there is linear relationship between the derivative values and the concentration levels [13, 14].

Disadvantages

Even though it is sensitive method still it is highly susceptible to various parameters. The method is limited to particular system only and has limited applications due to its less reproducibility. The method is second choice when existing instrumental method (which measures signal) is absent. It is less accurate in measuring zero-crossing spectra. There is likeness in shape of derivative spectra and zero order spectrum, so small variation in a basic spectrum can strongly modify derivative spectrum. Poor reproducibility can alter results in way when different spectrophotometers used for zero order spectra gives similar results but derivatization of them display different [15].

Applications

  1. Single component analysis: Derivative spectrophotometry analyses single component (Table 1) along with Area under Curve (Table 3) in pharmaceutical formulation.

  2. Multicomponent analysis: Derivative spectrophotometry in pharmaceutical analysis analyses more than one component in presence of other components i.e. simultaneous determination of two or more compounds. Spectral derivatization can remove the prevalence caused by spectra of disturbing compounds (Table 2) [3]

  3. Bioanalytical application: Besides pharmaceutical analysis, derivative spectrophotometry may be applied to different areas. Determination of compounds in various biological samples like plasma, serum, urine and brain tissue [2]. Amphotericine [52] and Diazepam [26] has been determined in human plasma with its order of derivatives.

  4. Forensic toxicology: Derivative spectroscopy has its application in toxicology especially of illicit drugs viz; amphetamine, ephedrine, meperidine, diazepam, etc. and can also be used in mixtures [1].

  5. Trace analysis: Derivative signal processing technique is widely used in practical analytical work in measurement of small amounts of substances in the presence of large amounts of potentially interfering substances [4]. Due to such interference, analytical signals becomes weak, noisy and superimposed on large background signals. The conditions like non-specific broadband interfering absorption, non-reproducible cuvette positioning, dirt or fingerprints on the cuvette walls, imperfect cuvette transmission matching, and solution turbidity results in degraded measurement precision is by sample-to-sample baseline shifts [4]. Baseline shifts may be due to practical errors, either are weak wavelength dependence (small particle turbidity) or wavelength-independent (light blockage caused by bubbles or large suspended particles). So, there is need of differentiation of relevant absorption from these sources of baseline shift [5]. It is expected to suppress broad background by differentiation with a aim that it reduces variations in background amplitude from sample-to-sample. This results in improved precision and measurement in many instances, especially in case if there is a lot of uncontrolled variability in the background and when the analyte signal is small compared to the background [4].

Table 1 Single Component determination of analyte in Pharmaceutical sample. 

Drug Order of derivative Wavelength selected(nm) Linearity (μg/ml) Year of publication Reference
Efavirenz D0
D1
239nm
248nm
5-40 2014 16
Carbimazole D1
D2
D3
D4
314nm
300nm
289nm
320nm
2-18 2014 17
Aripiprazole D0 217nm 1-6 2014 18
Chlorthalidone D1
D2
278nm & 288nm
286nm & 292nm
1-25 2014 19
Famotidine D1
D2
Valley-272.2nm
Max.amplitude-287.7nm
4-12 2014 20
Lacosamide D1 250nm 5-50 2013 21
Repaglinide D0
D1
293nm
245nm
10-80
10-70
2013 22
Dronedarne D0
D1
290nm
275nm
4-20n 2013 23
Irbesartan D3
D4
224nm
230nm
2-20
2-14
2012 24
Ciprofibrate D1 232nm 2-12 2012 25
Diazepam D4 306-333nm 2-10 2012 26
Stavudine D0
D1
D2
265nm
250.8nm
232.8nm
2-20
2-20
2-20
2012 27
Diarcerein D1 259.4 & 274.2nm 2-12 2012 28
Neomycin D1 277nm 0.10-0.51 2011 29
Fluconazole D1 268nm 150-350 2011 30
Nebivolol HCl D2
D3
296nm
290nm
40-80
10-60
2011 31
Ranitidine HCl D0
D1
312nm
332nm
0.5-35.1 2011 32
Ritonavir D2 232nm 10-50 2011 33
Alprazolam Overlain derivative spectroscopy 521nm 5-45 2011 34
Tropicamide D3
D4
263.8nm
255.4nm
10-100
10-100
2010 2
Olanzapine D1
D2
222nm
230nm
2-10
2-10
2010 2
Galanthamine D1 zero crossing spectroscopy 277.4nm 30-80 2010 2
Cisapride D1
D2
264,300nm
276,290nm
2-10
2-10
2010 35
Cefuroxime axetil D1 281nm 4-30 2010 36
Gemifloxacin mesylate D0
D1
D2
430nm
480nm
500nm
2-14
1-10
1-15
2010 37
Letrozole D0
D1
D2
240nm
224nm
241nm
0.25-20 2010 38
Losartan potassium D0
D1
205nm
234nm
3- 7
4- 16
2010 39
Lopinavir D1 220nm 5-35 2010 40
Ropinirole D1 262.5nm 4-20 2010 41
Metoprolol D0
D1
D2
D3
276nm
265,278,285nm
276,279,287,282nm
275,278,218nm
5-15 2010 42
Venlafaxine HCl D3 274nm 40-120 2010 43
Sertraline HCl D1 475.72-588.40nm 5-100 2009 2
Estapenem D1
D2
316nm
298nm & 316nm
4-60
2-28
2009 2
Candesartan cilexetil D1 270.1nm 6-32 2009 44
Gentamicin sulfate D3 281nm 0.004-0.008% 2009 45
Pioglitazone D0
D2
270nm
272-287.4nm
5-20
2-12
2009 46
Benazepril D1
D2
D3
213nm
219nm
223nm
1.2-12 2009 47
Ezetimibe D1
D2
D3
259.5nm
269nm
248nm
4-14
4-14
4-16
2008 48
Drotaverine D2 247.4nm 4-32 2008 49
Tenofovir D0
D1
260nm
273nm
5-40 2008 50
Prednisolone D0 242nm 0.36-50.46 2008 51
Amphotericine D0 300nm & 500nm 1.25-5 2008 52
Amoxicillin D1
D2
255.8nm
249.2nm
3.2-48 2008 53
Losartan D1 220-320nm 2-50 2004 55

Table 2 Simultaneous determination of two or more compounds in Pharmaceutical sample. 

Drug Order of derivative Wavelength (nm) Linearity (μg/ml) Year Reference
17-β Estradiol & Drospirenone D1
Zero crossing
208nm
282nm
0.5-8
0.5-32
2015 56
Tramadol HCl& Paracetamol D1 200-500nm 6-48
25-112
2015 57
Acetaminophen, Diphenhydramine & pseudoephedrine Zero crossing method 281.5nm
226nm
218nm
5-50
0.25-4
0.5-5
2015 58
Chloramphenicol, Dexamethasone & Naphazoline D1 220nm 20-70
6-14
3-8
2015 59
Zofenopril & Fluvastatin D1
D2
D3
D1
D2
D3
270.85nm
286.38nm
253.90nm
339.03nm
252.57nm
258.50nm
7.65-22.94
5.60-28
2015 60
Nebivolol & Clinidipine D1 221.6nm
249nm
4- 20
5- 25
2012 61
Ibuprofen & Paracetamol D1 200-235nm 12-32
20-40
2014 62
Levofloxacin hemihydrate & Ambroxol hydrochloride D1
Zero crossing
255.70nm
253nm
5-40
3-10.5
2014 63
Gatifloxacin & Prednisolone D1 348nm
263nm
3-21
6-42
2014 64
Diclofenac potassium, Paracetamol & Serratiopeptidase D1 252nm
276nm
330nm
2-15
2-30
2-80
2014 65
Rosuvastatin calcium & Fenofibrate Zero crossing point 224.11nm
243.29nm
16-48
4-12
2013 66
Paracetamol & Etodolac Zero crossing point 247nm
280nm
5-25
2-18
2013 67
Salbutamol sulphate & Ketotifen fumarate D1
D1
257nm
278nm
5-45
5-35
2013 68
Pioglitazone HCl& Glimepride D1 Zero crossing 225nm
248nm
5-30
4-20
2013 69
Levocetrizine HCl& Phenylephrine HCl D0 230nm
216nm
3-9
6-18
2013 70
Ofloxacin & Ornidazole D1 278nm
293.6nm
0.5-10
2-30
2013 71
Tolperisone & Paracetamol D1 261nm
243nm
0-2.5
3-9
2013 72
Paracetamol & Domperidone D1 250nm
285nm
5-25
0.8-5
2013 73
Drotaverine & Mefenemic acid D1 253.8nm
304nm
4-24 2013 74
Moxifloxacin & Cefixime 1st zero crossing wavelength 200-400nm 287nm & 317.9nm 1-16
1-15
2012 75
Ibuprofen & Famotidine D1 249nm
263.6nm
4-20
120-600
2012 76
Telmisartan & Metoprolol D2 299.5nm
224nm
3-15 2012 77
Nebivolol & S-Amlodipine D0
D1
280 & 364nm 294 & 279.7nm 10-60
5-30
2012 78
Lamivudine & Zidovudine D1 279nm
300nm
10-50 2012 79
Ondansetron & Pantoprazole D1 288.5nm
310nm
0.5-25
5-25
2012 80
Drotaverine & Nimesulide Ratio derivative spectroscopy 254 & 274.68nm 221.09 & 232.067nm 8-24
20-60
2012 81
Metoprolol & Amlodipine Ratio derivative spectroscopy D1 277.01nm
235.62nm
50-250
5-25
2012 82
Aceclofenac & Tizanidine 1st by zero crossing method 250nm
313nm
2-20
1-10
2011 83
Atrovastatin calcium & Amlodipine D0
D1
241nm
250nm
0-14
0-7
2011 84
Gemifloxacin mesylate & Ambroxol HCl D1 272nm
249.5nm
8-40
6-30
2011 85
Tenofovir disoproxil fumarate &Emtricitabine D1 224.38 & 306.88nm 3-21
2-14
2011 86
Simvastatin & Ezetimide D1
D1
219nm
265nm
2-40
1-20
2010 2
Clopidogrel Bisulphate & Aspirin D2 254nm
216nm
5-30 2010 2
Atorvastatin calcium & Ezetimibe D1 266.6nm
262.2nm
3-15 2010 87
Strychnine & Brucine D1
D1
265.4nm
256.4nm
10-50 2010 88
Pantoprazole sodium & Itopride D1 238.5-288nm 3-15
2-38
2010 89
Drotaverine HCL & Paracetamol D1 303.5nm
243.5nm
5-50
5-60
2010 90
Triprolidine HCl& Pseudoephedrine HCl D2
D2
321nm
271nm
200-100
10-50
2009 2
Amoxicillin & Cephalexin D1
D2
D1
226nm
274nm
212nm
10-60 2009 91
Cephalothin & Cefoxitin D1 235nm
236.7nm
4-32 2009 92
Tramadol & Ibuprofen D1 230.5nm
280nm
5-50 2008 2
Alendronate Na salt, Clodronate disodium salt & Etidronate disodium salt D1
D2
D3
D1
D2
D3
D1
D2
D3
233nm
245nm
254nm
236nm
261nm
284nm
232nm
243nm
253nm
25-600 2008 93
Doxylamine succinate, Pyridoxine HCl& Folic acid D1 270nm
332.8nm
309.2nm
2.5-50
1-40
1-30
2008 94
Nebivolol & Hydrochlorothiazide D1 294.6nm
334.6nm
8-40
10-60
2008 95
Metoprolol & Felodipine D1 222nm
235nm
20-150
10-60
2007 96
Ranitidine HCl& Ondansetron HCl D1 340.8nm
276.0nm
5-500
2-30
2007 97
Ondansetron & Paracetamol D1 302nm
246nm
0.5-0.20
20-30
2006 98
Metoprolol & Hydrochlorothiazide D3
D1
281nm
282nm
100-300
12.5-37.5
2006 99
Chlorprothixene & Amitryptyline D1
D2
316nm
261.4nm & 268nm
0.5-50
0.5-75
2005 100
Phenytoin, Barbital & Caffeine D1 207nm
210nm
230nm
0.24
0.01-27
0.049-27
2005 101

Table 3 Determination of compounds in pharmaceutical sample along with AUC. 

Drug Order of derivative Wavelength (nm) Linearity (μg/ml) AUC Year Reference
Tinidazole D1 268nm 5-25 314nm-322nm 2015 102
Ofloxacin D1 334nm 2-12 284nm-292nm 2015 103
Azelnidipine D1 242.6nm 1-20 250.5nm-258.8nm 2015 104
Finofibric acid D1 299nm 5-30 275nm-316nm 2015 105
Fluoxetine HCl D0 226nm 5-25 220nm-231nm 2015 106
Ondasatron HCl D2 2-10 248nm-254nm 2015 107
Ciprofloxacin HCl D2 2-10 270nm-278nm 2015 108
Ranitidine D2 238nm 3-18 310nm-324nm 2015 109
Diclazuriline D1 260nm 2-22 300nm-273nm 2014 110
Tadalafil D1 297nm 5-50 290nm-304nm 2014 111
Carvedilol HCl D1 233.7nm 1-14 240nm-244nm 2014 112
Rosuvastatin D1 252nm 5-35 247nm-257nm 2014 113
Aceclofenac D0
D1
274.65nm
259nm
5-30 269nm-279nm 2014 114
Rupatadine fumarate D1 214nm 1-30 244nm-255nm 2014 115
Imatimib mesylate D1 285nm(maxima)
227nm(minima)
5-30 237nm-277nm 2013 116
Oxolamine citrate D1 229.2nm 1-14 228.6nm-246.4nm 2013 117
Darunavir D1 248nm 2-24 257nm-267nm 2013 118
Paliperidone D0 238nm 3-18 232nm-244nm 2013 119
Isoniazide & Paraamino salicylicacid D1 243nm
257nm
2-10 258nm-268nm 2013 120
Glipizide D1 286nm(maxima)
263nm(minima)
5-25 255nm-295nm 2012 121
Zolpidem tartrate D0
D1
305nm(maxima)
263nm(minima)
5-50 316nm-263nm 2012 122

CONCLUSION

Derivative Spectrophotometry is presently available with software's controlling modern spectrophotometers. This makes easy to analyst in obtaining useful information from spectra of respective compounds. The derivatives of UV spectra give applicable information in elucidating compounds in pharmaceutical formulation. This present article provides complete understanding about derivative spectrophotometry technique & its applications.

REFERENCES

1. F. Rojas, C. Ojeda, J. Pavon, Talanta. 35, 753-761, 1988. [ Links ]

2. J. Karpinska. Basic Principles and Analytical Application of Derivative Spectrophotometry, Jamal Uddin, 2012. [ Links ]

3. A. Owen. Uses of Derivative Spectroscopy, UV-Visible Spectroscopy, Application Note, Agilent Technologies, 1995. [ Links ]

4. D. Cameron, D. Moffatt. Apl Spec. 41, 539-44, 1987. [ Links ]

5. S. Kus, Z. Marczenko, N. Obarski. Chem Anal. 41, 899-927, 1996. [ Links ]

6. T. Owen. Fundamentals of Modern UV-Visible Spectroscopy: A Primer: Hewlett-Packard, 1996. [ Links ]

7. S. Upstone. Ultraviolet/Visible Light Absorption Spectrophotometry in Clinical Chemistry, Encyclopedia of Analytical Chemistry, 2000. [ Links ]

8. H. Willard, L. Merritt, J. Dean, F. Settle. Instrumental Methods of Analysis. [ Links ]

9. L. Mendham, R. Denney, J. Barnes, M. Thomas, B. Shivasankar. Vogel's Textbook of Quantitative Chemical Analaysis, [ Links ]

10. Beckett AH, Stenlake JB. Practical Pharmaceutical Chemistry. [ Links ]

11. Jeffery GH, Bassett J, Mendham J, Denney RC. Textbook of Quantitative Chemical Analysis. [ Links ]

12. M. Koba, K. Koba, L. Przyborowski. Acta Pol Pharm. 65, 289-294, 2008. [ Links ]

13. P. Minkiewicz, B. Pliszka, J. Dziuba, J. Oszmiański. Coll. Czech. Chem. Comm. 69, 1443-1452, 2004. [ Links ]

14. V. Saakov, V. Drapkin, A. Krivchenko, E. Rozengart, Y. Bogachev, M. Knyazev et al. Sprin. Sci. Bus. Med. 2012. [ Links ]

15. J. Karpińska. Talanta. 64, 801-822, 2004. [ Links ]

16. A. Nangare, K. Pawa, A. Shinde. Der Pharma. Let. 6, 143-150, 2014, [ Links ]

17. A. Deosarkar, S. Deshpande, S. Walode. Amer. J. Pharm. Tech. Res. 2, 678-685, 2012. [ Links ]

18. S. Balaram, A. Ramesh, P. Jagadish. Res. J. Pharma. Tech. 7, 1113-1117, 2014. [ Links ]

19. N. Abdullah, M. Hassan, R. Hassan. Ara. J. Chem. 2005 [ Links ]

20. M. Ranganath, K. Reddy. Intern. J. Pharm. Tech. Res. 4, 123-126, 2010. [ Links ]

21. R. Chaudhari. Asa. J. Pharma. Clin. Res. 6, 162-164. 2013. [ Links ]

22. S. Baravaliya, J. Tandel, M. Maste, M. Mohite. Intern. J. Pharm. Tech. Res. 4, 2013. [ Links ]

23. C. Rajyalakshmi, T. Benjamin, C. Rambabu. Intern. J. Pharm. Tech. Res.5, 217-221, 2013. [ Links ]

24. P. Dhanawade, R. Kane. Inter. J. Res. Pharma. Biom. Sci. 3, 1300-1305, 2012. [ Links ]

25. P. Jain, H. Jivani, R. Khatal. S. Surana. Ind. J. Pharm. Sci. 74, 168, 2012. [ Links ]

26. H. El Lakiss, M. Ilie, D. Baconi, D. Bäläläu. Farmacia. 60, 565-570, 2012. [ Links ]

27. V. Panditi, A. Vinukonda. Inter. J. Chem. Tech. Res. 3,18-22, 2011. [ Links ]

28. R. Pandey, P. Patil, M. Patil, P. Deshmukh, S. Bari. Pharma. Meth. 3, 4-8, 2012. [ Links ]

29. B. Szaniszlo, C. Iuga, M. Bojita. Farmacie. 84, 398-401, 2011. [ Links ]

30. S. Pandey, P. Pandey, S. Dubey, U. Chaturvedi, A. Rai. Tha. J Pharma. Sci. 36, 2012. [ Links ]

31. S. Malipatil, M. Deepthi, S. Patil, K. Jahan. Int. J. Pharm. Pharm. Sci. 3, 13-15, 2011. [ Links ]

32. A. Sokol, J. Karpinska, R. Telecka, B. Starczewska. Acta. Pol. Pharma. 68, 169-177, 2011. [ Links ]

33. K. Chiranjeevi, K. Channabasavaraj, P. Reddy, P. Nagaraju. Intern. J. Chem. Tech. Res.; 3, 58-62, 2011. [ Links ]

34. S. Sharma, M. Sharma. Eur. J. Appl. Sci. 3, 81-85, 2011. [ Links ]

35. E. Hassan, M. Hagga, H. Al Johar. J. Pharm. Biom. Ana. 24, 659-665, 2001. [ Links ]

36. M. Game, D. Sakarkar, K. Gabhane, K. Tapar. Intern. J. Chem. Tech. Res. 2(2), 1259-1262, 2010. [ Links ]

37. D. Madhuri, K. Chandrasekhar, N. Devanna, G. Somasekhar. Intern. J. Pharma. Sci. and Res. 1(4), 222-231, 2010. [ Links ]

38. S. Acharjya, P. Mallick, P. Panda, K. Kumar, M. Annapurna. J. Adv. Pharma. Tech. Res. 1, 348, 2010. [ Links ]

39. O. Lastra, I. Lemus, H. Sánchez, R. Pérez. J. Pharma. Bio. Ana. 33, 175-180, 2003. [ Links ]

40. H. Thakkar, K. Patel. Chron. Y. Sci. 1(3), 22, 2010. [ Links ]

41. M. Sali, A. Barhate, V. Patil, A. Bhadoriya, V. Choudhari, B. Kuchekar et al. Der. Pharm. Che. 2, 12-16, 2010. [ Links ]

42. B. Yilmaz. Int. J. Pharma. Bio. Sci. 1(1), 1-15, 2010. [ Links ]

43. V. Shirvi.. J. Adv. Pharma. Tech. Res. 1, 548, 2010. [ Links ]

44. A. Charoo, M. Bashir, E. Abdalla, K. Ali. Ana. let. 42, 2232-2243, 2009. [ Links ]

45. J. Krzek, H. Woltyńska, U. Hubicka, Ana. Let. 42, 473-482, 2009. [ Links ]

46. S. Ulu, F. Elmal. Ana. Let. 42, 2254-2270, 2009. [ Links ]

47. B. Stanisz, S. Paszun, M. Lesniak. Acta. Pol. Pharma. D. Res. 66(4), 343-349, 2009. [ Links ]

48. M. Sharma, D. Mhaske, M. Mahadik, S. Kadam, S. Dhaneshwar. Ind. J. Pharma. Sci. 70, 258, 2008. [ Links ]

49. P. Anumolu, S. Gurrala, V. Yeradesi, S. Puvvadi, S. Chavali. Trop. J. Pharma. Res. 12(2), 227-232, 2013. [ Links ]

50. M. Himaja, J. Kalpana, C. Anbarasu. Int. J. Pharm. Pharm. Sci. 6, 302-304, 2014. [ Links ]

51. N. Shreef. Raf. J. Sci. 19, 38-46, 2008. [ Links ]

52. J. Millership, F. McCaffrey, D. Tierney. J. Pharma. Bio. Ana. 48(2), 408-413, 2008. [ Links ]

53. U. Kemal, P. Murat, K. Elif, O. Fyyaz. Turk. J. Pharma. Sci. 5, 1-16, 2008. [ Links ]

54. M. Ansari, M. Kazemipour, M. Baradaran, H. Jalalizadeh. Ira. J. P'cology. Therap. 3(1), 21-25, 2004. [ Links ]

55. K. Gunjan, V. Deshmukh, P. Kashya, R. Bawankar, Y. Vaishnav, D. Biswas. J. Pharm. Pharm. Sci. 6, 102-104, 2010. [ Links ]

56. Z. Aydoğmuş, E. Yılmaz, S. Yörüsün, S. Akpinar. Intern. Sch. Res. N. 2015. [ Links ]

57. A. El-Zinati, M. Abdel-Latif. The O. Ana. Chem. J. 8(1), 2015. [ Links ]

58. E. Souri, A. Rahimi, N. Ravari, M. Tehrani. Iran. J. Pharma. Res. 14, 435, 2015. [ Links ]

59. V. Hoang, N. Hue, N. Tho, H. Nguyen. Spec. Acta. P. A: Mol. Biom. Spec. 139: 20-27, 2015. [ Links ]

60. M. Stolarczyk, A. Maslanka, A. Apola, W. Rybak, J. Krzek. Spec. Acta. P. A: Mol. Biom. Spec. 148, 66-71, 2015. [ Links ]

61. K. Thula, D. Patel, D. Maheshwari. Intern. J. Pharma. Sci. 31, 243-247, 2015. [ Links ]

62. V. Hoang, D. Ly, N. Tho, T. Minh, H. Nguyen. The Sci. W. J. 2014.Links ]

63. C. Mathew, B. Suman, M. Ajitha, P. Babu. Ori. J. Che. 30, 1385-1389, 2014. [ Links ]

64. R. Sversut, I. Alcântara, A. Rosa, A. Baroni, P. Rodrigues, A. Singh, M. Amaral, N. Kassab et al. Arab J. Che. 2014. [ Links ]

65. E. Pandya, P. Kapupara, K. Shah. J. Chem. Pharma. Res.6, 912-924, 2014. [ Links ]

66. B. Patel, A. Jadav, H. Solanki, S. Parmar, V. Parmar, A. Captain. Intern. J. Pharma. Res. Rev. 2, 1-6, 2013. [ Links ]

67. A. Jadav, B. Gohel, S. Mital, B. Patel, S. Parmar. Int. J. Pharma. Tech. Res. 5, 1155-1160, 2013. [ Links ]

68. P. Joshi, S. Parmar, B. Patel, Intern. J. Spectro. 2013. [ Links ]

69. S. Gulve, K. Tarkase, D. Mundhe, P. Hajare. Int. J. Pharma. Tech. Res; 5, 122-127, 2013. [ Links ]

70. V. Deshmukh, D. Wagh, S. Vassa, K. Gujar. Intern. Res. J. Pharma. 4,115-119, 2013. [ Links ]

71. R. Rele, S. Sawant, S. Patil. Intern. Res. J. Pharma. 4, 43-48, 2013. [ Links ]

72. G. Abirami, T. Vetrichelvan. Int. J. Pharm. Pharm. Sci. 5, 488-92, 2013. [ Links ]

73. P. Pawar, S. Hapse, M. Salve, A. Agarkar. Intern. J. D. Res. Tec. 3, 37-44, 2013. [ Links ]

74. P. Anumolu. Intern. Res. J. Pharma. 4,215-219, 2013. [ Links ]

75. M. Attimarad, B. Al-Dhubiab, I. Alhaider, A. Nair. Chem. Cen. J. 6,1, 2012. [ Links ]

76. D. Patel, R. Shah, A. Patel, K. Ponal. Intern. J. Pharma. Sci. 3, 2012. [ Links ]

77. P. Patel, B. Marolia, S. Shah, D. Shah. Intern. Res. J. Pharm. 3, 259-62, 2012. [ Links ]

78. A. Shetty, R. Sireesha, M. Ahmed. Intern. J. Pharm. Tech. Res.4, 1676-1685, 2012. [ Links ]

79. P. Mohite, R. Pandhare, S. Khanage. Adv. Pharma. Bull. 2, 115, 2012. [ Links ]

80. S. Mujbaile, P. Prasad, S. Wate. J. Pharm. Biol. Sci. 4, 5-8, 2012. [ Links ]

81. A. Sutar, A. Battewar, A. Hable, V. Modak, V. Choudhari, C. Magdum. Adv. Pharma. Bull. 2008. [ Links ]

82. A. Chabukswar, S. Tambe, V. Choudhari, S. Sharma, M. Mohokar, S. Chate. Res. J. Pharma. Tech. 5, 950-4, 2012. [ Links ]

83. S. Gondane, M. Deshpande, M. Mahajan, S. Sawant. Intern. J. Chem. Tech. Res. 3, 620-624, 2011. [ Links ]

84. S. Kumbhar, S. Jadhav, N. Bhatia, M. Bhatia. Int. J. Pharm. Pharm. Sci. 3, 195-7, 2011. [ Links ]

85. S. Wankhede, A. Mahajan, S. Chitlange. Der. Pharma. Chemica. 3, 269-273, 2011. [ Links ]

86. V. Choudhari, S. Ingale, S. Gite, D. Tajane, V. Modak, A. Ambekar et. al. Pharma. Met.; 2,47-52, 2011. [ Links ]

87. Y. Baghdady, M. Al-Ghobashy, A. Abdel-Aleem, S. Weshahy. Intern. J. Chem. Stu. 1, 2013. [ Links ]

88. B. Ganesan, P. Perumal, V. Manickam, S. Srikakolapu, S. Gotteti, L. Thirumurthy. Int. J. Pharm. Tech. Res. 2, 1528-1532, 2012. [ Links ]

89. D. Bageshwar, A. Pawar, V. Khanvilkar, V. Kadam. Asi. J. Pharm. Clin. Res. 3,221-3, 2010. [ Links ]

90. S. Mahaparale, R. Telekone, R. Raut, S. Damle, P. Kasture. Ind. J. Pharma. Sci. 72,133, 2010. [ Links ]

91. S. Dikran, M. Hussan. Der. Pharma. Chem. 6, 169-173, 2011. [ Links ]

92. J. Murillo, J. Lernus, L. Garcia. J. Pharma. Bio. Ana. 14, 257-266, 1996. [ Links ]

93. M. Koba, K. Koba, L. Przyborowski. Acta. Pol. Pharm. 65, 289-294, 2008. [ Links ]

94. A. Pathak, S. Rajput. Ind. J. Pharma. Sci. 70, 513, 2008. [ Links ]

95. D. Shah, K. Bhatt, R. Mehta, S. Baldania. J. AOAC Interna. 91,1075-1082, 2008. [ Links ]

96. H. Salem, O. Abdallah. Am. J. App. Sci. 4, 709-717, 2007. [ Links ]

97. S. Pillai, I. Singhvi. Ind. J. Pharma. Sci. 69, 2007. [ Links ]

98. P. Kumar, M. Krishna, P. Prakash, B. Kumar, P. Madhusudhan. J. Chem. 3, 134-136, 2006. [ Links ]

99. M. Stolarczyk, R. Ekiert, J. Krzek, W. Rzeszutko. Acta. Pol. Pharma. 63,169-173, 2006. [ Links ]

100. J. Karpińska, J. Szostak, Spec. Act. Part A: Mol. Bio. Spec. 61, 975-981, 2005. [ Links ]

101. A. Abbaspour, R. Mirzajani. J. Pharma. Bio. Ana. 38, 420-427, 2005. [ Links ]

102. S. Masthannamma, S. Ananta, B. Naik, A. Kumar. Intern. J. Res. Deve. Pharm. L. Sci. 1582-1589, 2015. [ Links ]

103. S. Masthannamma, S. Ananta, B. Naik, A. Kumar. Ind. J. Pharma. Sci. 92,333, 2015. [ Links ]

104. R. Rele. J. Res. Deve. Pharm. L. Sci. 1624-1629, 2015. [ Links ]

105. A. Alageswaran, S. Jerad, V. Niraimathi. Acta. Pol. Pharma. 95,269-273, 2015. [ Links ]

106. M. Annapurna, D. Pradhan. Chem. Sci. Trans. 1, 697-701. [ Links ]

107. S. Jadhav, R. Kharat, A. Tamboli. Pharma. Tutor. 3, 42-46, 2015. [ Links ]

108. R. Kharat, S. Jadhav, D. Tamboli, A. Tamboli. Intern. J. Adv. Sci. Res. 1, 137-144, 2015. [ Links ]

109. A. Mali. Intern. J. Ana. Pharma. Bio. Sci. 4,7-16, 2015 [ Links ]

110. T. Ibrahim. Validated UV-spectrophotometric estimation of diclazurilin API and drug product. Chem. Sci. Trans 2, 710-71, 2006. [ Links ]

111. Z. Khan, A. Patil, A. Shirkhedkar. Intern. J. Spec. 2014. [ Links ]

112. R. Rele, P. Tiwatane. Res. J. Pharma. Tech. 7, 1459-1462, 2014. [ Links ]

113. R. Lahare, A. Phuge, A. Gite, A. Jadhav. Int J. P. Appl. Bio. Sci. 6, 169-74, 2014. [ Links ]

114. C. Srujani, B. Sravanthi, D. Madhuri. Sch. Aca. J. Pharm. 3, 471-476, 2014. [ Links ]

115. R. Rele, P. Tiwatane. Asi. J. Res. Chem. 7, 2014. [ Links ]

116. S. Patil, R. Doijad. Asi J. Pharma. Cli. Res. 6, 54-57, 2013. [ Links ]

117. V. Rajan. Res. J. Pharm. Tech. 7, 1150-1152, 2014. [ Links ]

118. S. Vanukuri, S. Mastanamma, G. Alekhya. Intern J. Pharm. Pharma. Sci. 6, 2013. [ Links ]

119. S. Kancharla, G. Pavan, N. Paladugu, S. Bonthu, D. Poloju. Int. J. Bio. Pharm. Res. 4, 412-416, 2013. [ Links ]

120. S. Vijayaraj. Asi. J. Pharm. Clin, 6, 108-110. 2013. [ Links ]

121. D. Rathod, M. Dole, S. Sawant. Asi. J. Pharm. Clin. Res. 5, 102-104, 2012. [ Links ]

122. M. Mahajan, S. Sawant. Int. J. Chem. Tech. Res. 4, 403-408, 2012. [ Links ]

123. S. Acharjya, M. Rao, B. Kumar, M. Annapurna. J. Adv. Sci. Res. 1, 42-47, 2011. [ Links ]

124. S. Patel. 2011. [ Links ]

125. S. Gujarathi, A. Shah, S. Jagdale, P. Datar, V. Choudhari, B. Kuchekar. Int. J. Pharma. Sci. Rev. Res. 3, 115-119, 2010. [ Links ]

126. K. Shah, T. Desai, A. Behera, R. Pal, K. Girhepunje. Res. J. Pharma. Bio. Chem. Sci. 2010. [ Links ]

127. K. Gupta, V. Samrit, V. Thakur, A. Hemke. J. Chem. Pharm. Res. 2, 467-472, 2010. [ Links ]

128. S. Acharjya, P. Mallick, P. Panda, K. Kumar, M. Annapurna. J. Adv. Pharma. Tech. Res. 1, 348, 2010. [ Links ]

129. Y. Prasad, K. Rajasekhar, V. Shankarananth, H. Yaminikrishna, S. Saikumar, P. Reddy. J. Pharma. Res. 2, 1593, 2009. [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License