SciELO - Scientific Electronic Library Online

vol.58 número3-4Prevalencia de blastocistosis y otras parasitosis intestinales en una comunidad rural del Estado Anzoátegui, VenezuelaAislamiento de amebas de vida libre en piscinas públicas de Santiago de Chile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Parasitología latinoamericana

versión On-line ISSN 0717-7712

Parasitol. latinoam. v.58 n.3-4 Santiago jul. 2003 

Parasitol Latinoam 58: 101 - 105, 2003 FLAP


Microtubule cytoskeleton distribution using fluorescent
taxoid in
Tetratrichomonas didelphidis



Tetratrichomonas didelphidis is a flagellated protozoan found in the intestine of opossums. The specimens were stained by the Giemsa method and by FLUTAX-2, an active fluorescent derivative of Taxol which binds to the ab-tubulin polimerized of microtubules of cells. Giemsa stain revealed the morphological features of trichomonads such as four anterior flagella, undulating membrane, axostyle and posterior flagellum. An intense fluorescence was observed in living trophozoites of T. didelphidis and Trichomonas vaginalis (used as control), incubated with FLUTAX-2. An analysis of the composition of the cytoskeleton of T. didelphidis will contribute to understanding the cellular morphology of the parasites.
Key words: Tetratrichomonas didelphidis, microtubule cytoskeleton, fluorescent taxoid.


Few trichomonad species have a proven pathogenic potential for mammals and birds. In general, the species inhabiting trichomonad primary sites, i. e., the large intestine, appear to be non pathogenic. The species with proven pathogenic potential have evolved to inhabit areas other than the large intestine of their hosts1. Tetratrichomonas didelphidis is a flagellate protozoan found in the intestine, cecum and colon, of the opossum Didelphis marsupialis2, D. albiventris3, and Lutreolina crassicaudata4. The taxonomy of trichomonads has had a complex history. This species was first described with the name Trichomonas didelphidis5. Subsequently, others authors described the species again using the correct genus, Tetratrichomonas5.

Microtubules are essential for the maintenance of cell shape and organization; for cytoplasmic transport, motility and division in eukariotic cells. In addition, they are targets of antimitotic drugs, including colchicines, vinblastine, and Taxol (paclitaxel)6. Taxol blocks the cell division and caused its death7-9, being widely used as a microtubule stabilizing agent. It is employed in the treatment of ovarian, breast, lung, head and neck, cervix carcinomas and lymphomas10. Recently, Taxol is used in experiments of transient invagination of flagella by Tritrichomonas foetus to stabilizing microtubules11 and in the study of resistance to arsenite in Leshmania donovani12. Fluorescent Taxol derivatives can be extremely useful in the study of cellular microtubules, as well as the mechanisms of microtubule assembly and stabilization by Taxol13,14. Flutax-215 (Figure 1), an active fluorescent derivative of Taxol, binds to ab-tubulin dimer polymerized. It interacts specifically with the Taxol binding site, probably at the outer microtubule surface16, making them both directly and rapidly observable under fluorescence microscope. Cytoskeleton of Ptk2 epithelial cells, U937 leukemia cells, neuro2A neuroblastoma cells, and Trypanosoma cruzi was stained with FLUTAX14.

There are few reports regarding the biological aspects of T. didelphidis2-4,17,18. Take into account that the cytoskeleton of T. didelphidis is completely unknown, in this study we present the analysis of microtubule distribution in living trophozoites of T. didelphidis using the fluorescent taxoid Flutax-2. This probe, 7-O-[N-(4´-fluoresceincarbonyl)-L-alanyl]Taxol (FLUTAX-2), was obtained by the reaction of 7-O-(L-alanyl) Taxol with the corresponding amine-reactive fluorescent dye, as described15. FLUTAX-2 had ultraviolet (UV)-visible absorbance and fluorescence emission spectra in accordance with the respective chromophores. Analysis by high-performance liquid chromato-graphy (HPLC) FLUTAX-2 showed a purity (228 nm) of 91% (0.3% Taxol). The concentration of FLUTAX-2 was determined spectrophoto-metrically in 0.5% sodium dodecyl sulphate (SDS), 50 mM sodium phosphate buffer, pH 7.0, employing the practical extinction coefficient Î458nm = 23,100 ± 600 M-1 cm-1, obtained by weighing and by SDS solubilization of the taxoid.


The TDLC01 strain of T. didelphidis used in this study was isolated from the swabbed rectum of L. crassicaudata and cultivated in Diamond's19 modified trypticase-yeast extract-starch (TYS) medium, without maltose and with starch solution, pH 7.5 (5 mg/ml)17. The cells were grown in vitro at 28ºC (± 0.5) in TYS medium supplemented with 10 % (v/v) heat inactivated bovine serum, penicillin (1000 IU/ml) and streptomycin sulphate (1 mg/ml). Certain samples were frozen and maintained at -196°C with 5% (v/v) of dimethyl sulfoxide (DMSO) as previously described20.

One Trichomonas vaginalis strain was used in this study as control for FLUTAX-2 binding21. The 30238 strain was obtained from the American Type Culture Collection (ATCC). The strain was cultivated axenically in vitro at 37°C, in trypticase-yeast extract-maltose (TYM), Diamond medium19 without agar, pH 6.0, supplemented with 10% heat inactivated bovine serum, penicillin (1,000 IU/ml) and streptomycin sulphate (1 mg/ml). The trichomonads in the logarithmic phase of growth exhibited more than 95% mobility and normal morphology.

Trophozoites of T. didelphidis and T. vaginalis strains were counted in a hemocytometer to obtain 106 cells/ml. Intact cells were incubated with FLUTAX-2 (1 mM, final concentration) at 37°C, during 40 min, and observed in a Zeiss fluorescence microscope.


Figures 2 and 3 are from T. didelphidis TDLC01 strain, stained with Giemsa as previously described3, to show the protozoan structure by light microscopy. There were four anterior flagella unequal in size in the mature individuals, and a well-developed undulating membrane extended almost the entire length of the body (Figures 2, 3). The undulating membrane often exhibits several bold waves and the outer margin of the membrane consists of the accessory filament, which extends into a free posterior flagellum (Figures 2, 3). There was a spheroidal, ellipsoidal, or ovoid nucleus situated in the anterior portion of the body (Figures 2, 3), clearly discernible in most living and stained specimens. Anterior to the nucleus was a blepharoplast where the flagella were inserted (Figures 2, 3). Posterior to the nucleus the capitulum continues as a slender, hyaline, somewhat attenuating axostylar trunk that courses near the anteroposterior axis of the organism, its terminal segment projecting approximately one-third the cell length beyond the posterior surface of the flagellate (Figure 2). Both trichomonad species displayed an intense fluorescence in the axostyle, centrossome and flagella of living cells, strongly suggesting the microtubule composition of these structures (Figures 4 - 6). Figures 4 and 5 show the trophozoites of T. didelphidis after incubation with FLUTAX-2. Structures such as centrossome, axostyle and the anterior flagella jointed, can be observed (Figure 4). Figure 6, 30238 strain, show the same structures as above: the centrossome, the axostylar position through the cell shape and, the anterior flagella, arranged in two groups, as described in some organisms22.

As shown by Lopes et al23, using specific monoclonal antibodies, T. vaginalis presents a-tubulin at the flagella, basal bodies and the axostyle. ab-tubulin is present at the axostyle and flagella too. Our data are in accordance with them23, since FLUTAX-2 binds to ab-tubulin dimmers, for both trichomonad species. The axostyle contains acetylated tubulin23, a characteristic isoform of stable microtubules24, contrary to the findings of others who claim that this structure is not permanent25-27.

The direct observation of microtubules with FLUTAX-2 in living T. didelphidis and T. vaginalis trophozoites presents an advantage over indirect immunofluorescence and does not require microinjection of individual cells to introduce the probe. As shown by Evangelio et al 14, it allows diverse morphological applications, including for example, the taxonomy and cell cycle characte-rization of flagellates and ciliates. Moreover, the major advantage of this method is the absence of cell fixation, and consequent death, which can mask the true morphological characteristics of living cells.

Our results showed the binding of FLUTAX-2 in two trichomonad species. An analysis of the composition of the cytoskeleton of T. didelphidis will contribute to understanding the biochemical aspects involved in cellular morphology and behavior as well as the mechanisms related to host-parasite interactions.


1.- BONDURANT R H, HONIGBERG B M. Trichomonads of veterinary importance. In: Parasitic Protozoa. (Kreier J. P., ed). Pp. 111-204. Academic Press, New York, 1994.

2.- ANDERSEN F L, REILLY J R. The anatomy of Tetratrichomonas didelphidis (Hegner and Ratcliffe, 1927) comb. nov. from the opossum. J Parasitol 1965; 14: 27-35.

3.- TASCA T, INDRUSIAK C, GLOCK L et al. Prevalence of Tetratrichomonas didelphidis from the opossum Didelphis albiventris in the Botanical Garden, Porto Alegre, Rio Grande do Sul, Brazil. Parasitol al Día 2001a; 25: 132-4.

4.- TASCA T, DE CARLI GA, GLOCK L, JECKEL-NETO E A. Morphologic aspects of Tetratrichomonas didelphidis isolated from opossum Didelphis marsupialis and Lutreolina crassicaudata. Mem Inst Oswaldo Cruz 2001b; 96: 265-71.

5.- HEGNER R W, RATCLIFFE H. Trichomonads from the vagina of the monkey, from the mouth of the cat and man, and from the intestine of the monkey, opossum and prairie-dog. J Parasitol 1927; 14: 27-35.

6.- WILSON L, JORDAN M A. Microtubules. In: Pharmacological probes of microtubule function. (Hyams, J. S., Lloy, C. W eds ). Pp 59-84. Wiley-Liss, New York. 1994.

7.- HORWITZ S B. Mechanism of action of Taxol. Trends Pharm Sci 1992; 13: 134-6.

8.- JORDAN M A, WILSON L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 1998; 10: 123-30.

9.- SCHIFF P B, FANT J, HORWITZ S B. Promotion of microtubule assembly in vitro Taxol. Nature 1979; 277: 665-7.

10.- ROWINSKY E K, DONEHOWER R. Paclitaxel (Taxol). New Engl J Med 1995; 332: 1001-14.

11.- GRANGER B L, WARWOOD S J, BENCHIMOL M, DE SOUZA W. Transient invagination of flagella by Tritrichomonas foetus. Parasitol Res 2000; 86: 699-709.

12.- JAYANARAYAN K G, DEY C S. Resistance to arsenite modulates expression of b and g-tubulin and sensitivity to paclitaxel during differentiation of Leishmania donovani. Parasitol Res 2002; 88: 754-9.

13.- ABAL M, SOUTO A A, AMAT-GUERRI F et al. Centrossome and spindle pole microtubules are main targets of a fluorescent taxoid inducing cell death. Cell Motil Cytosk 2001; 49A: 1-15.

14.- EVANGELIO J A, ABAL M, BARASOAIN I et al. Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motil Cytosk 1998; 39: 73-90.

15.- SOUTO A A, ACUÑA A U, ANDREU J M et al. New fluorescent water-soluble Taxol derivatives. Angew Chem Int Ed Engl 1995; 34: 2710-2.

16.- DIAZ J F, STROBE R, ENGELBORGHS Y et al. Molecular recognition of taxol by microtubules: kinetics and thermodynamics of binding of fluorescent taxol derivatives to an exposed site. J Biol Chem 2000; 275: 26265-76.

17.- TASCA T, DE CARLI G A, STEINDEL M et al. Modification and adaptation in semi-defined media for cultivation of flagellate Tetratrichomonas didelphidis (Trichomonadidae: Trichomonadinae) from the Didelphis marsupialis. Parasitol al Día 1999; 23: 121-2.

18.- TASCA T, DE CARLI G A. Growth kinetic study of Tetratrichomonas didelphidis isolated from Lutreolina crassicaudata and interaction with a prokaryotic cell. Parasitol Res 2001c; 87: 626-30.

19.- DIAMOND L S. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 1957; 43: 488-90.

20.- HONIGBERG B M, FARRIS V K, LIVINGSTON M C. Preservation of Trichomonas vaginalis and Trichomonas gallinae in liquid nitrogen. Prog Protozool. Proc Int Conf Protozool, 2nd. Pp 199. Excerpta Med Found Int Congr Ser N0 91. 1965.

21.- LECKE S B, TASCA T, SOUTO A A, DE CARLI G A. Perspective of a new diagnostic for human trichomonosis. Mem Inst Oswaldo Cruz 2003; 98: 273-6.

22.- HONIGBERG B M, BRUGEROLLE G. Structure. In: Trichomonads parasitic in humans. (Honigberg B. M., ed). Pp. 5-35. Springer-Verlag, New York, 1990.

23.- LOPES L C, BENCHIMOL M, RIBEIRO K C. Immunolocalization of tubulin isoforms and post-translational modifications in the protist Tritrichomonas foetus and Trichomonas vaginalis. Histochem Cell 2001; 116: 17-29.

24.- ROBSON S J, BURGOYNE R D. Differential localization of tyrosinated, detyrosinated, and acetylated a-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell Motil 1989; 2: 273-82.

25.- BRUGEROLLE G, BRICHEUX G, COFFE G. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads. Biol Cell 1996; 88: 29-36.

26.- DELGADO-VISCOGLIOSI P, BRUGEROLLE G, VISCOGLIOSI E. Tubulin pos-translational modifications in the primitive protist Trichomonas vaginalis. Cell Motil Cytosk 1996; 33: 288-97.

27.- JULIANO C, MONACO G, RUBINO S, CAPPUCCINELLI P. Inhibition of Trichomonas vaginalis replication by the microtubule stabilizer Taxol. J Protozool 1986; 33: 255-60.

Acknowledgements. The authors thank Dr. Sérgio De Meda Lamb, Pharmacy School Chairman for his support; Dr. Denise C. Machado, IPB, PUCRS, for microscope assistance. S. B. L. is recipient of a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) fellowship (# 00501323), Brazil, and T. T. of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. This study received grant from CNPq (# 470148/ 01-2)
* Laboratório de Parasitologia Clínica, Faculdade de Farmácia
** Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
*** Laboratório de Síntese Orgânica, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
+ Corresponding author. FAX: + 55 51 33332.2582. E-mail

Convocatoria para 2004
Premio Fred L. Soper a la excelencia en la bibliografía de salud

La fundación Panamericana de la Salud y Educación, entidad sin fines de lucro con sede en Washington, D.C., y socia colaboradora de la Organización Panamericana de la Salud (OPS) está aceptando nominaciones de artículos publicados en las revistas científicas que figuran en el Index Medicus durante el año 2003.

El artículo propuesto deberá haber sido publicado en alguna publicación científica afiliada al Index Medicus (MEDLINE). Los autores deben estar afiliados con una institución académica, de investigación o servicio ubicada en los países de la Región de las Américas. Se dará preferencia a los estudios que abarquen más de una disciplina y a trabajos relacionados con enfermedades infecciosas. Los trabajos pueden consistir en un informe, un análisis de nuevos datos (experimentales o de observación), o un nuevo enfoque para analizar los datos disponibles.

El premio, que costa de un diploma al mérito y dinero en efectivo de EUA$ 2.500

Las propuestas deberán ser recibidas a más tardar el 30 de junio de 2004 a esta dirección:

Comité Premio Fred L. Soper
Fundación Panamericana de la Salud y Educación
525 Twenty-thrid Street, N.W.
Washington, DC 20037
Teléfono: 202-974-3416 - fax: 202-974-3636
Correo electrónico:

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons