SciELO - Scientific Electronic Library Online

 
vol.41 issue4Energy and Randić energy of special graphsFuzzy Sβ-continuous and fuzzy Sβ-open mappings author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.41 no.4 Antofagasta Aug. 2022

http://dx.doi.org/10.22199/issn.0717-6279-4475 

Artículos

Minimal connected restrained monophonic sets in graphs

A. P. Santhakumaran1 

P. Titus2 

K. Ganesamoorthy3 

1Department of Mathematics, Hindustan Institute of Technology and Science, Chennai-603 103, India. e-mail: apskumar1953@gmail.com

2Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region, Nagercoil-629 004, India. e-mail: titusvino@yahoo.com

3Department of Mathematics, Coimbatore Institute of Technology, Coimbatore-641 014, India. e-mail: kvgm 2005@yahoo.co.in

Abstract

For a connected graph G = (V, E) of order at least two, a connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic number of G and is denoted by mcr(G). A connected restrained monophonic set S of G is called a minimal connected restrained monophonic set if no proper subset of S is a connected restrained monophonic set of G. The upper connected restrained monophonic number of G, denoted by m+ cr(G), is defined as the maximum cardinality of a minimal connected restrained monophonic set of G. We determine bounds for it and certain general properties satisfied by this parameter are studied. It is shown that, for positive integers a, b such that 4 ≤ a ≤ b, there exists a connected graph G such that mcr(G) = a and m+ cr(G) = b.

Keywords: restrained monophonic set; restrained monophonic number; connected restrained monophonic set; connected restrained monophonic number; minimal connected restrained monophonic set

Texto completo disponible sólo en PDF

Full text available only in PDF format.

Acknowledgments

Research work was supported by Project No. NBHM/R.P.29/2015/Fresh/157, National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India

References

[1] F. Buckley and F. Harary, Distance in Graphs. Redwood City, CA: Addison-Wesley, 1990. [ Links ]

[2] E. R. Costa, M. C. Dourado, and R. M. Sampaio, “Inapproximability results related to monophonic convexity”, Discrete Applied Mathematics, vol. 197, pp. 70-74, 2015. doi: 10.1016/j.dam.2014.09.012 [ Links ]

[3] M. C. Dourado , F. Protti, and J. L. Szwarcfiter, “Algorithmic aspects of monophonic convexity”, Electronic Notes in Discrete Mathematics, vol. 30, pp. 177-182, 2008. doi: 10.1016/j.endm.2008.01.031 [ Links ]

[4] M. C. Dourado , F. Protti , and J. L. Szwarcfiter, “Complexity results related to monophonic convexity”, Discrete Applied Mathematics , vol. 158, no. 12, pp. 1268-1274, 2010. doi: 10.1016/j.dam.2009.11.016 [ Links ]

[5] K. Ganesamoorthy and S. Lakshmi Priya, “The Outer Connected Monophonic Number of a Graph”, Ars Combinatoria, vol. 153, pp. 149-160, 2020. [ Links ]

[6] K. Ganesamoorthy and S. Lakshmi Priya, “Extreme Outer Connected Monophonic Graphs”, Communications in Combinatorics and Optimization, 2021, doi: 10.22049/CCO.2021.27042.1184 [ Links ]

[7] K. Ganesamoorthy andS. Lakshmi Priya , “Further results on the outer connected monophonic number of a graph”, Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, vol. 41, no. 4, pp. 51-59, 2021. [On line]. Available: https://bit.ly/3J2aABILinks ]

[8] K. Ganesamoorthy , M. Murugan, and A. P. N. Santhakumaran, “Extreme-support total monophonic graphs”, Bulletin of the Iranian Mathematical Society, vol. 47, no. S1, pp. 159-170, 2021. doi: 10.1007/s41980-020-00485-4 [ Links ]

[9] F. Harary, Graph Theory. Addison-Wesley, 1969. [ Links ]

[10] E. M. Paluga and S. R. Canoy, Jr, “Monophonic numbers of the join and composition of connected graphs”, Discrete Mathematics, vol. 307, no. 9-10, pp. 1146-1154, 2007. doi: 10.1016/j.disc.2006.08.002 [ Links ]

[11] A. P. Santhakumaran and P. Titus, “Monophonic Distance in Graphs”, Discrete Mathematics, Algorithms and Applications, vol. 3, no. 2, pp. 159-169, 2011. doi: 10.1142/s1793830911001176 [ Links ]

[12] A. P. Santhakumaran and P. Titus, A Note on “Monophonic Distance in Graphs”, Discrete Mathematics, Algorithms and Applications, vol. 4, no. 2, 2012, doi: 10.1142/S1793830912500188 [ Links ]

[13] A. P. Santhakumaran , P. Titus andK. Ganesamoorthy , “On the Monophonic Number of a Graph”, Journal of applied mathematics & informatics, vol. 32, no. 1-2, pp. 255-266, 2014. doi: 10.14317/jami.2014.255 [ Links ]

[14] A. P. Santhakumaran , P. Titus andK. Ganesamoorthy , “The Restrained Monophonic Number of a Graph”, TWMS journal of pure and applied mathematics (Online). Accepted. [ Links ]

[15] A. P. Santhakumaran , P. Titus andK. Ganesamoorthy , “The Connected and Forcing Connected Restrained Monophonic Numbers of a Graph”, Communicated. [ Links ]

[16] A. P. Santhakumaran , P. Titus, K. Ganesamoorthy , andM. Murugan , “The forcing total monophonic number of a graph”, Proyecciones (Antofagasta), vol. 40, no. 2, pp. 561-571, 2021. doi: 10.22199/issn.0717-6279-2021-02-0031 [ Links ]

[17] A. P. Santhakumaran , T. Venkata Raghu andK. Ganesamoorthy , “Minimal Restrained Monophonic Sets in Graphs”, TWMS journal of pure and applied mathematics (Online) , vol. 11, no. 3, pp. 762-771, 2021 [ Links ]

Received: September 01, 2021; Accepted: February 01, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License