SciELO - Scientific Electronic Library Online

 
vol.41 issue3Spectral operation in locally convex algebrasPowers of cycle graph which are k-self complementary and k-co-self complementary author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.41 no.3 Antofagasta June 2022

http://dx.doi.org/10.22199/issn.0717-6279-4633 

Artículos

On Δ-statistical convergence double sequences in intuitionistic fuzzy normed spaces

Reena Antal1 

Meenakshi Chawla2 

Vijay Kumar3 

Bipan Hazarika4 

1Department of Mathematics, Chandigarh University, Mohali, Punjab, India. e-mail: reena.antal@gmail.com

2Department of Mathematics, Chandigarh University, Mohali, Punjab, India. e-mail: chawlameenakshi7@gmail.com

3Department of Mathematics, Chandigarh University, Mohali, Punjab, India. e-mail: vjy kaushik@yahoo.com

4Department of Mathematics, Gauhati University, Guwahati 781014, Assam, India. e-mail: bh rgu@yahoo.co.in

Abstract

In the present paper, the basic objective of our work is to define Δ-statistical convergence in the setup of intuitionistic fuzzy normed spaces for double sequences. We have proved some examples which shows this method of convergence is more generalized. Further, we defined the Δ-statistical Cauchy sequences in these spaces and given the Cauchy convergence criterion for this new notion of convergence.

Keywords: statistical convergence; Δᵐ-statistical convergence; double sequence; intuitionistic fuzzy normed space

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] R. Antal , M. Chawla, V. Kumar , “Statistical Λ-convergence in intuitionistic fuzzy normed spaces”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, no. 3, pp. 22-33, 2019. [Online] Available: https://bit.ly/3Q0uQHdLinks ]

[2] R. Antal, M. Chawla, V. Kumar, “Generalized statistical convergence of order α in random n-normed space”, Advances and Applications in Mathematical Sciences, vol. 18, no. 8, pp. 715-729, 2019. [ Links ]

[3] M. Chawla , M. S. Saroa, and V. Kumar, “On Δ-statistical convergence of order ∝ in random 2-normed space”, Miskolc Mathematical Notes, vol. 16, no. 2, pp. 1003-1015, 2015. doi: 10.18514/mmn.2015.821 [ Links ]

[4] M. Chawla and Palak, “Lacunary statistical convergence of double sequences of order α in probabilistic normed spaces”, Advances in Mathematics: Scientific Journal, vol. 9, no. 9, pp. 7257-7268, 2020. doi: 10.37418/amsj.9.9.75 [ Links ]

[5] A. Esi, “On some new generalized difference double sequence spaces defined by Orlicz functions”, Matematika, vol. 27, pp. 31-40, 2011. [ Links ]

[6] A. Esi and M. Kemal Ozdemir, “Generalized Δ-Statistical convergence in probabilistic normed space”, Journal of Computational Analysis and Applications, vol. 13, no. 5, pp. 923-932, 2011. [ Links ]

[7] M. Et and R. Çolak, “On some generalized difference sequence spaces”, Soochow Journal of Mathematical, vol. 21, no. 4, pp. 377-386, 1995 [ Links ]

[8] M. Et, F. Nuray, “Δ-Statistical convergence”, Indian Journal of Pure and Applied Mathematics, vol. 32, no. 6, pp. 961-969, 2001. [ Links ]

[9] H. Fast, “Sur La Convergence Statistique”, Colloquium Mathematicum, vol. 2, no. 3-4, pp. 241-244, 1951. doi: 10.4064/cm-2-3-4-241-244 [ Links ]

[10] J. A. Fridy, “On statistical convergence”, Analysis, vol. 5, no. 4, pp. 301-313, 1985. doi: 10.1524/anly.1985.5.4.301 [ Links ]

[11] B. Hazarika, “Lacunary generalized difference statistical convergence in random 2-normed spaces”, Proyecciones (Antofagasta), vol. 31, no. 4, pp. 373-390, 2012. doi: 10.4067/s0716-09172012000400006 [ Links ]

[12] B. Hazarika, A. Alotaibi, and S. A. Mohiuddine, “Statistical convergence in measure for double sequences of fuzzy-valued functions”, Soft Computing, vol. 24, no. 9, pp. 6613-6622, 2020. doi: 10.1007/s00500-020-04805-y [ Links ]

[13] S. Karakus, “Statistical convergence on probabilistic normed space”, Mathematical Communications, vol. 12, pp. 11-23, 2007. [Online] Available: https://bit.ly/3ahCZq4Links ]

[14] S. Karakus, K. Demirci, and O. Duman, “Statistical convergence on intuitionistic fuzzy normed spaces”, Chaos, Solitons and Fractals, vol. 35, no. 4, pp. 763-769, 2008. doi: 10.1016/j.chaos.2006.05.046 [ Links ]

[15] H. Kizmaz, “On certain sequence spaces”, Canadian Mathematical Bulletin, vol. 24, no. 2, pp. 169-176, 1981. doi: 10.4153/cmb-1981-027-5 [ Links ]

[16] I. J. Maddox, “Statistical convergence in a locally convex space”, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, no. 1, pp. 141-145, 1988. doi: 10.1017/s0305004100065312 [ Links ]

[17] S. A. Mohiuddine and Q. M. Danish Lohani, “On generalized statistical convergence in intuitionistic fuzzy normed space”, Chaos, Solitons and Fractals , vol. 42, no. 3, pp. 1731-1737, 2009. doi: 10.1016/j.chaos.2009.03.086 [ Links ]

[18] S. A. Mohiuddine , B. Hazarika , andA. Alotaibi , “On statistical convergence of double sequences of fuzzy valued functions”, Journal of Intelligent and Fuzzy Systems, vol. 32, no. 6, pp. 4331-4342, 2017. doi: 10.3233/jifs-16974 [ Links ]

[19] F. Móricz, “Statistical convergence of multiple sequences”, Archiv der Mathematik, vol. 81, no. 1, pp. 82-89, 2003. doi: 10.1007/s00013-003-0506-9 [ Links ]

[20] M. Mursaleen, A. K. Noman, “On the spaces of λ-convergent and bounded sequences”, Thai Journal of Mathematics, vol. 8, no. 2, pp. 311-329, 2010. [ Links ]

[21] M. Mursaleen andS. A. Mohiuddine , “On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space”, Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 142-149, 2009. doi: 10.1016/j.cam.2009.07.005 [ Links ]

[22] M. Mursaleen andS. A. Mohiuddine , “Statistical convergence of double sequences in intuitionistic fuzzy normed spaces”, Chaos, Solitons and Fractals , vol. 41, no. 5, pp. 2414-2421, 2009. doi: 10.1016/j.chaos.2008.09.018 [ Links ]

[23] M. Mursaleen , O. H. H. Edely, “Statistical convergence of double sequences”, Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 223-231, 2003. [ Links ]

[24] J. H. Park, “Intuitionistic fuzzy metric spaces”, Chaos, Solitons and Fractals , vol. 22, no. 5, pp. 1039-1046, 2004. doi: 10.1016/j.chaos.2004.02.051 [ Links ]

[25] A. Pringsheim, “Zur Theorie der Zweifach Unendlichen zahlenfolgen”, Mathematische Annalen, vol. 53, no. 3, pp. 289-321, 1900. doi: 10.1007/bf01448977 [ Links ]

[26] R. Saadati and J. H. Park, “On the intuitionistic fuzzy topological spaces”, Chaos, Solitons and Fractals , vol. 27, no. 2, pp. 331-344, 2006. doi: 10.1016/j.chaos.2005.03.019 [ Links ]

[27] B. Schweizer and A. Sklar, “Statistical Metric Spaces”, Pacific Journal of Mathematics, vol. 10, no. 1, pp. 313-334, 1960. doi: 10.2140/pjm.1960.10.313 [ Links ]

[28] M. Sen andM. Et , “Lacunary statistical and lacunary strongly convergence of generalized difference sequences in intuitionistic fuzzy normed linear spaces”, Boletim da Sociedade Paranaense de Matemática, vol. 38, no. 1, pp. 117-129, 2018. doi: 10.5269/bspm.v38i1.34814 [ Links ]

[29] B. C. Tripathy, B. Sarma, “On some classes of difference double sequence spaces”, Fasciculi Mathematici, vol. 41, pp. 135-142, 2009. [ Links ]

[30] B. C. Tripathy and B. Sarma, “Statistically convergent difference double sequence spaces”, Acta Mathematica Sinica, English Series, vol. 24, no. 5, pp. 737-742, 2008. doi: 10.1007/s10114-007-6648-0 [ Links ]

[31] B. C. Tripathy and S. Borgohain, “Statistically convergent difference sequence spaces of fuzzy real numbers defined by Orlicz function”, Thai Journal of Mathematics , vol. 11, no. 2, pp. 357-370, 2013. [ Links ]

[32] B. C. Tripathy and M. Sen, “On lacunary strongly almost convergent double sequences of fuzzy numbers”, Annals of the University of Craiova - Mathematics and Computer Science series, vol. 42, no. 2, pp. 254-259, 2015 [ Links ]

[33] B. C. Tripathy and R. Goswami, “Statistically convergent multiple sequences in probabilistic normed spaces”, University Politehnica of Bucharest - Scientific Bulletin- Serie A, vol. 78, no. 4, pp. 83-94, 2016. [ Links ]

[34] B. C. Tripathy , “Statistically convergent double sequences”, Tamkang Journal of Mathematics, vol. 34, no. 3, pp. 231-237, 2003. doi: 10.5556/j.tkjm.34.2003.314 [ Links ]

[35] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338-353, 1965. doi: 10.1016/s0019-9958(65)90241-x [ Links ]

Received: December 30, 2020; Accepted: August 30, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License