SciELO - Scientific Electronic Library Online

 
vol.40 issue6Power domination in splitting and degree splitting graphThe structure of Cayley graphs of dihedral groups of Valencies 1, 2 and 3 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.40 no.6 Antofagasta  2021

http://dx.doi.org/10.22199/issn.0717-6279-4357-3841 

Artículos

The paradox of heat conduction, influence of variable viscosity, and thermal conductivity on magnetized dissipative Casson fluid with stratification models

M. T. Akolade1 
http://orcid.org/0000-0002-6876-7203

A. S. Idowu2 
http://orcid.org/0000-0002-3634-3449

B. O. Falodun3 

J. U. Abubakar4 

1 University of Ilorin, Department of Mathematics. Ilorin, Nigeria, e-mail: 7-68ev006pg@students.unilorin.edu.ng

2 University of Ilorin, Department of Mathematics. Ilorin, Nigeria, e-mail: asidowu@gmail.com

3 University of Ilorin, Department of Mathematics. Ilorin, Nigeria, e-mail: falodunbidemi2014@gmail.com

4 University of Ilorin, Department of Mathematics. Ilorin, Nigeria, e-mail: abubakar.ju@unilorin.edu.ng

Abstract

The boundary layer flow of temperature-dependent variable thermal conductivity and dynamic viscosity on flow, heat, and mass transfer of magnetized and dissipative Casson fluid over a slenderized stretching sheet has been studied. The model explores the Cattaneo-Christov heat flux paradox instead of the Fourier’s law plus the stratifications impact. The variable temperature-dependent plastic dynamic viscosity and thermal conductivity were assumed to vary as a linear function of temperature. The governing systems of equations in PDEs were transformed into non-linear ordinary differential equations using the suitable similarity transformations, hence the approximate solutions were obtained using Chebyshev Spectral Collocation Method (CSCM). Effects of pertinent flow parameters on concentration, temperature, and velocity profiles are presented graphically and tabled, therein, thermal relaxation and wall thickness parameters slow down the distribution of the flowing fluid. A rise in Casson parameter, temperature-dependent thermal conductivity, and velocity power index parameter increases the skin friction thus leading to a decrease in energy and mass gradient at the wall, also, temperature gradient attain maximum within 0.2 - 1.0 variation of Casson parameter.

Keywords: Casson fluid; Cattaneo-Christov; MHD; Spectral collocation method; Stratifications

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] A. Miner and U. Ghoshal, “Cooling of high-power-density microdevices using liquid metals coolants”, Applied physics letters, vol. 85, no. 3, pp. 506-508, 2004. [ Links ]

[2] A. S. Idowu and B. O. Falodun, “Soret-Dufour effects on MHD heat and mass transfer of Walter’s-B viscoelastic fluid over a semi-infinite vertical plate: spectral relaxation analysis”, Journal of Taibah University for Science, vol. 13, no. 1, pp. 49-62, 2019. [ Links ]

[3] B. Mahanthesh, B. J. Gireesha, and R. S. R. Gorlac, “Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate”, Alexandria engineering journal, vol. 55, no. 1, pp. 569-581, 2016. [ Links ]

[4] S. Nasir, Z. Shah, S. Islam, W. Khan, and S. N. Khan, “Radiative flow of magneto hydrodynamics single-walled carbon nanotube over a convectively heated stretchable rotating disk with velocity slip effect”, Advances in mechanical engineering, vol. 11, no. 3, pp. 1-11, 2019. [ Links ]

[5] S. Bilal, Shafqatullah, A. S. Alshomrani, M. Y. Malik, N. Kausar, F. Khan, and K. Rehman, “Analysis of Carreau fluid in the presence of thermal stratification and magnetic field effect”, Result in physics, vol. 10, pp. 118-125, 2018. [ Links ]

[6] E. M. Arthur, I. Y. Seini, and L. B. Bortteir, “Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field”, Journal of applied mathematics and physics, vol. 3, pp. 713-723, 2015. [ Links ]

[7] T. M., Ajayi, A. J. Omowaye and I. L. Animasaun,” Effects of viscous dis sipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis”, International journal of engineering research in Africa, vol. 28, pp. 73-89, 2017. [ Links ]

[8] M. Y. Malik , M. Khan, T. Salahuddin, and I. Khan, “Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: Using Keller box method”, Engineering science and technology an international journal, vol. 19, pp. 1985-1992, 2016. [ Links ]

[9] B. Kumar and S. Srinivas, “Unsteady hydromagnetic flow of Eyring- Powell nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation”, Journal of applied and computational mechanics, vol. 6, no. 2, pp. 259-270, 2020. [ Links ]

[10] L. J. Crane, “Flow past a stretching plate”, Zeitschrift für angewandte mathematik und physik, vol. 21, pp. 645-647, 1970. [ Links ]

[11] S. A. M. Mehryan, F. M. Kashkooli, M. Soltani, and K. Raahemifar, “Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach”, PLoS ONE, vol. 11, no. 1, 2016. [ Links ]

[12] A. S. Rao, V. Prasad, N. Nagendra, K. Murthy, N. Reddy, and O. Beg, “Numerical modeling of non-similar mixed convection heat transfer over a stretching surface with slip conditions”, World journal of mechanics, vol. 5, no. 6, pp. 117-128, 2015. [ Links ]

[13] T. C. Chiam, “Hydromagnetic flow over a surface stretching with a power-law velocity”, International journal of engineering science, vol. 33, no. 3, pp. 429-435, 1995. [ Links ]

[14] I. L. Animasaun, E. A. Adebile, and A. I. Fagbade, “Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopic analysis method”, Journal of the Nigerian Mathematical Society, vol. 35, no. 1, pp. 1-17, 2016. [ Links ]

[15] N. A. Khan and S. Khan, “Dual solution of Casson fluid over a porous medium: Exact solutions with extra boundary condition”, ACTA Universitatis Cibiniensis, vol. 68, no. 1, pp. 35-49, 2016. [ Links ]

[16] M. Y. Malik , M. Khan , T. Salahuddin , and I. Khan, “Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: Using Keller box method”, Engineering science and technology an international journal , vol. 19, pp. 1985-1992, 2016. [ Links ]

[17] V. Singh and S. Agarwal, “MHD flow and heat transfer for Maxwell fluid over an exponentially stretching sheet with variable thermal conductivity in porous medium”, Thermal science, vol. 18, no. sup. 2, pp. 599-615, 2014. [ Links ]

[18] T. M. Ajayi, A. J. Omowaye , andI. L. Animasaun , “Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis”, International journal of engineering research in Africa , vol. 28, pp. 73-89, 2017. [ Links ]

[19] A. Hussanan, M. Z. Salleh, H. T. Alkasasbeh, and I. Khan, “MHD flow and heat transfer in a Casson fluid over a nonlinearly stretching sheet with newtonian heating”, Heat transfer research, vol. 49, no. 12, pp. 1185-1198, 2018. [ Links ]

[20] A. S. Rao , S. Sainath, P. Rajendra, and G. Ramu, “Mathematical modelling of hydromagnetic Casson non-newtonian nanofluid convection slip flow from an isothermal sphere”, Nonlinear engineering, vol. 8, no. 1, pp. 645-660, 2019. [ Links ]

[21] E. Sebnem, “Effects of thermal stratification and mixing on reservoir water quality”, The Japanese Society of Limnology, vol. 9, pp. 135-142, 2008. [ Links ]

[22] F. H. M. S. Noor, S. A. A. Ahmad, and M. A. Zaileha, “Double stratification effects on boundary layer over a stretching cylinder with chemical reaction and heat generation”, Journal of physics: Conference series, vol. 890, no. 1, Art. ID. 012019, 2017. [ Links ]

[23] W. N. Mutuku and O. D. Makinde, “Double stratification effects on heat and mass transfer in unsteady MHD nanofluid flow over a flat surface”. Asia pacific journal computational engineering, vol. 4, Art. ID. 2, 2017. [ Links ]

[24] A. J. Omowaye andI. L. Animasaun , “Upper-convected maxwell fluid flow with variable thermo-physical properties over a melting surface situated in hot environment subject to thermal stratification”, Journal of applied fluid mechanics, vol. 9, no. 4, pp. 1777-1790, 2016. [ Links ]

[25] O. D. Makinde, W. A. Khan, and J. R. Culham, “MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer”, International journal of heat and mass transfer, vol. 93, pp. 595-604, 2016. [ Links ]

[26] M. S. Dada, and F. H. Adefolaju, “Dissipation, MHD and radiation effects on an unsteady convective heat and mass transfer in a Darcy- Forcheimer porous medium”, Journal of mathematics research, vol. 4, no. 2, pp. 110-127, 2012. [ Links ]

[27] A. Zaib, K. Bhattacharyya, M. S. Uddin, and S. Shafie, “Dual solutions of non-newtonian Casson fluid flow and heat transfer over an exponentially permeable shrinking sheet with viscous dissipation”, Modelling and simulation in engineering, vol. 2016. Art. ID. 6968371, 2016. [ Links ]

[28] E. Marín, “Does Fourier’s law of heat conduction contradict the theory of relativity?”, Latin-american journal of physics education, vol. 5, no. 2, pp. 402-405, 2011. [ Links ]

[29] C. I. Christov, “On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction”, Mechanics research communications, vol. 36, pp. 481-486, 2009. [ Links ]

[30] M. Y. Malik , M. Khan , T. Salahuddin , and I. Khan, “Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: Using Keller box method”. Engineering science and technology an international journal , vol. 19, pp. 1985-1992, 2016. [ Links ]

[31] M. E. Ali and N. Sandeep, “Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study”, Results in physics, vol. 7, pp. 21-30, 2017. [ Links ]

[32] M. Mustafa, ”Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convicted Maxwell fluid”, AIP Advances, vol. 5, no. 4, Art. ID. 047109, 2015. [ Links ]

[33] T. Hayat, M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas, and T. Yasmeen, “Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface”, International journal of heat and mass transfer , vol. 99, pp. 702-710, 2016. [ Links ]

[34] E. Arthur, I. Seini, and L. Bortteir, “Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field”, Journal of applied mathematics and physics , vol. 3, pp. 713-723, 2015. [ Links ]

[35] M. T. Akolade, A. S. Idowu , and A. T. Adeosun, “Multislip and Soret-Dufour influence on nonlinear convection flow of MHD dissipative Casson fluid over a slandering stretching sheet with generalized heat flux phenomenon”, Heat transfer, vol. 50, no. 4, pp. 3913-3933, 2021. [ Links ]

[36] A. S. Idowu , M. T. Akolade, ,J. U. Abubakar, andB. O. Falodun , “MHD free convective heat and mass transfer flow of dissipative Casson fluid with variable viscosity and thermal conductivity effects”, Journal of Taibah University for Science , vol.14, no. 1, pp. 851-862, 2020. [ Links ]

[37] K. V. Prasad , H. Vaidya, K. Vajravelu, and V. Ramanjini, “Analytical study of Cattaneo-Christov heat flux model for Williamson-Nanofluid flow over a slender elastic sheet with variable thickness”, Journal of nanofluids, vol. 7, no. 3, pp. 583-594, 2018. [ Links ]

[38] M. M. Nandeppanavar and S. Shakunthala, “Impact of Cattaneo- Christov heat flux on magnetohydrodynamic flow and heat transfer of carbon nanofluid due to stretching sheet”, Journal of nanofluids , vol. 8, no. 4, pp. 746-755, 2019. [ Links ]

[39] Z. Zhah, A. Dawar, I. Khan, S. Islam , D. L. S. Ching, and A. Z. Khan, “Cattaneo-Cristov model for electrical magnetic micropolar Casson ferrofluid over a stretching/shrinking sheet using effective thermal con- ductivity model”, Case studies in thermal engineering, vol. 13, Art. ID.100352, 2019. [ Links ]

[40] L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis. Oxford: Clarendon, 1968. [ Links ]

[41] A. S. Idowu , M. T. Akolade , T. L. Oyekunle, and J. U. Abubakar, “Nonlinear convection flow of dissipative Casson nanofluid through an inclined annular microchannel with a porous medium”, Heat transfer , vol. 50, no. 4, pp. 3388-3406, 2021. [ Links ]

[42] T. L. Oyekunle , M. T. Akolade , and S. A. Agunbiade, “Thermal-diffusion and diffusion-thermo effects on heat and mass transfer in chemically reacting MHD Casson nanofluid with viscous dissipation”, Applications and applied mathematics: an international journal, vol. 16, no. 1, pp. 705-723, 2021. [ Links ]

[43] C. Canuto, A. Quarteroni, M. Y. Hussaini, and T. A. Zang, Spectral methods in fluid dynamics. Berlin: Springer, 1988. [ Links ]

[44] A. H. Khater, R. D. Temsah, and M. M. Hassan, “A Chebyshev spectral collocation method for solving Burgers-type equations”, Journal of computational and applied mathematics, vol. 222, pp. 333-350, 2008. [ Links ]

[45] U. Ehrenstein and R. Peyret, “A Chebyshev spectral collocation method for the Navier-Stokes equations with application to double-diffusive convection”, International journal for numerical methods in fluids, vol. 9, pp. 427-452, 1989. [ Links ]

[46] E. M. E. Elbarbary, “Chebyshev finite difference method for the solution of boundary-layer equations”, Applied mathematics and computation, vol. 160, pp. 487-498, 2005. [ Links ]

[47] M. M. Babatin, “Numerical treatment for the flow of Casson fluid and heat transfer model over an unsteady stretching surface in the presence of internal heat generation/absorption and thermal radiation”, Applications and applied mathematics: an international journal , vol. 13, no. 2, pp. 854-862, 2018. [ Links ]

[48] M. T. Akolade , “Thermophysical impact on the squeezing motion of non- Newtonian fluid with quadratic convection, velocity slip, and convective surface conditions between parallel disks”, Partial differential equations in applied mathematics, vol. 4, Art. ID. 100056, 2021. [ Links ]

[49] M. T. Akolade , A. T. Adeosun, and J. O. Olabode, “Influence of thermophysical features on MHD squeezed flow of dissipative Casson fluid with chemical and radiative effects”, Journal of applied and computational mechanics , vol. 7, no. 4, pp. 1999-2009, 2021. [ Links ]

[50] M. T. Akolade and Y. O. Tijani, “A comparative study of three dimensional flow of Casson-Williamson nanofluids past a riga plate: Spectral quasi-linearization approach”, Partial differential equations in applied mathematics , vol. 4, Art. ID. 100108, 2021. [ Links ]

[51] T. L. Oyekunle , M. T. Akolade , J. U. Abubakar, and O. T. Olotu, “Influence of variable properties on quadratic convective flow of Casson nanofluid past an inclined plane”, Journal of applied sciences, information and computing, vol. 2, no.1, pp. 56-67, 2021. [ Links ]

[52] S. Kayvan, H. Hadi, and. T. Seyed-Mohammad, “Stagnation-point flow of upper-convected Maxwell fluids”, International journal of non-linear mechanics, vol. 41, pp. 1242-1247, 2006. [ Links ]

[53] B. A. Finlayson, The method of weighted residuals and variational principles. New Tork, NY: Academic Press, 1972. [ Links ]

[54] S. Nadeema, R. U. Haqa, and C. Lee, "MHD flow of a Casson fluid over an exponentially shrinking sheet”, Scientia iranica, vol. 19, no. 6, pp. 1550-1553, 2012. [ Links ]

[55] S. Pramanik, “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation”, Ain shams engineering journal, vol. 5, no. 1, pp. 205-212, 2014. [ Links ]

Received: November 01, 2019; Accepted: October 01, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License