Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.39 no.5 Antofagasta 2020
http://dx.doi.org/10.22199/issn.0717-6279-2020-05-0074
Artículos
On functions of (ϕ, 2, α)-bounded variation
1Universidad Nacional de Colombia, Dept. de Matemáticas, Bogotá, Colombia e-mail: recastillo@unal.edu.co
2Universidad Militar Nueva Granada, Dept. de Matemáticas, Cajicá, Colombia e-mail: hector.chaparro@unimilitar.edu.co
3Universidad de Oriente, Departamento de Matemáticas, Cumaná, Venezuela e-mail: eddycharles2007@gmail.com
We introduce the (ϕ, 2, α)-bounded variation spaces, which are a common generalization between Riesz’s spaces, p-variation and (ϕ, 2)-bounded variation spaces. We also study its structure as Banach spaces, as well as some embedding results.
Keywords: Riesz p-variation; (ϕ, 2)-bounded variation; Bounded variation
Acknowledgments
H. C. Chaparro was supported by Research Office UMNG through the project INV-CIAS-3151.
References
[1] J. Appell, J. Banas, and N. J. Merentes Díaz, Bounded variation and around. Berlin: De Gruyter, 2014, doi: 10.1515/9783110265118 [ Links ]
[2] R. E. Castillo, H. Rafeiro, and E. Trousselot, “A generalization for the Riesz p-variation”, Revista colombiana de matemáticas, vol. 48, no. 2, pp. 165-190, 2015, doi: 10.15446/recolma.v48n2.54123 [ Links ]
[3] R. E. Castillo , H. Rafeiro , and E. Trousselot, “Space of functions with some generalization of bounded variation in the sense of de La Vallée Poussin”, Journal of function spaces, vol. 2015, pp. Art ID. 605380, 2015, doi: 10.1155/2015/605380 [ Links ]
[4] D. I. Donoho, M. Vetterli, R. A. Devore, and I. Daubechies, “Data compression and harmonic analysis”, IEEE transactions on information theory, vol. 44, no. 6, pp. 2435-2476, 1998, doi: 10.1109/18.720544 [ Links ]
[5] C. Jordan, “Sur la série de Fourier”, in Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol. 92, Paris: Gauthier-Villars, 1881, pp. 228-230. [On line]. Available: https://bit.ly/3hzLVoB [ Links ]
[6] N. Merentes, “Functions of bounded (φ, 2)-variation”, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio mathematica, vol. 34, pp. 145-154, 1991. [On line]. Available: https://bit.ly/2FsCtqg [ Links ]
[7] S. Rivas, " Sobre la noción de (φ, k) Variacion Acotada y la lipschitzidad global del operador de composición entre espacios de Banach", Trabajo de Ascenso para optar a la categoría de profesor Asociado, Universidad Nacional Abierta, Caracas, Venezuela, 1994. [ Links ]
[8] A. I. Vol'pert and S. I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics. Dordrecht: Springer, 1985. [ Links ]
Received: July 31, 2019; Accepted: August 31, 2019