SciELO - Scientific Electronic Library Online

vol.39 issue2Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.2 Antofagasta Apr. 2020 


Fixed points and diametral sets for sequentially bounded mappings in orbital ultrametric spaces

1University Moulay Ismail, Dept. of Mathematics, Faculty of Sciences, Meknes, Morocco. e-mail:

2University Moulay Ismail, Dept. of Mathematics, Faculty of Sciences, Meknes, Morocco. e-mail:

3University Sidi Mohamed Ben Abdellah, Dept. of Mathematics, FSDM, LAMA, Fes, Morocco. e-mail:


In this paper, the T -orbital ultrametric spaces are introduced and a fixed point theorem for sequentially bounded mappings is given. Our main result extends some known theorems for nonexpansive mappings. Examples are given to support our work.

Keywords: Ultrametric spaces; T -orbital sets; T -dimetral sets; Fixed point; Sequentially bounded mappings

Texto completo disponible sólo en PDF

Full text available only in PDF format.


[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fundamenta mathematicae, vol. 3, pp. 133-181, 1922, doi: 10.4064/fm-3-1-133-181. [ Links ]

[2] V. Berinde, Iterative approximation of fixed points, vol. 1912. Berlin: Springer, 2007, doi: 10.1007/978-3-540-72234-2. [ Links ]

[3] A. Granas and J. Dugundji, Fixed point theory. New York, NY: Springer, 2010,doi: 10.1007/978-0-387-21593-8. [ Links ]

[4] P. Hitzler and A. K. Seda, “The fixed-point theorems of priess-crampe and ribenboim in logic programming”, in Valuation theory and its applications, vol. 1, F.- V. Kuhlmann, S. Kuhlmann, and M. Marshall, Eds. Providence, RI: American Mathematical Society, 2002, pp. 219-235, doi: 10.1090/fic/032. [ Links ]

[5] B. Hughes, “Trees and ultrametric spaces: a categorical equivalence”, Advances in mathematics, vol. 189, no. 1, pp. 148-191, Dec. 2004, doi: 10.1016/j.aim.2003.11.008. [ Links ]

[6] M. A. Khamsi and W. A. Kirk, An Introduction to metric spaces and fixed point theory. New York, NY: John Wiley and sons, 2001, doi: 10.1002/9781118033074. [ Links ]

[7] A. Y. Khrennikov, S. V. Kozyrev, and W. A. Zúñiga-Galindo, Ultrametric pseudodifferential equations and applications, vol. 168. Cambridge: Cambridge University Press, 2018, doi: 10.1017/9781316986707. [ Links ]

[8] W. A. Kirk and N. Shahzad, “Some fixed point results in ultrametric spaces”, Topology and its applications, vol. 159, no. 15, pp. 3327-3334, Sep. 2012, doi: 10.1016/j.topol.2012.07.016. [ Links ]

[9] W. A. Kirk andN. Shahzad , Fixed point theory in distance spaces. Cham: Springer, 2014, doi: 10.1007/978-3-319-10927-5. [ Links ]

[10] C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over non- archimedean valued field, vol. 119. Cambridge: Cambridge University Press , 2010, doi: 10.1017/CBO9780511729959. [ Links ]

[11] C. Petalas and T. Vidalis, “A fixed point theorem in non-archimedean vector spaces”, Proceedings of the American Mathematical Society, vol. 118, no. 3, pp. 819-821, 1993, doi: 10.1090/S0002-9939-1993-1132421-2. [ Links ]

[12] S. Priess-Crampe and P. Ribenboim, “Logic programming and ultrametric spaces”, Rendiconti di matematica e delle sue applicazioni, vol. 19, no. 2, pp. 155-176, 1999. [On line]. Available: Links ]

[13] S. Priess-Crampe and P. Ribenboim , “Ultrametric spaces and logic programming”, The journal of logic programming, vol. 42, no. 2, pp. 59-70, Feb. 2000, doi: 10.1016/s0743-1066(99)00002-3. [ Links ]

[14] S. Priess-Crampe and P. Ribenboim , “Ultrametric dynamics”, Illinois journal of mathematics, vol. 55, no. 1, pp. 287-303, 2011. [On line]. Available: ]

[15] A. C. M. van Rooij, Non-archimedean functional analysis. New York, NY: M. Dekker, 1978. [ Links ]

Received: June 30, 2019; Accepted: August 30, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License