Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Proyecciones (Antofagasta)
Print version ISSN 0716-0917
Proyecciones (Antofagasta) vol.39 no.2 Antofagasta Apr. 2020
http://dx.doi.org/10.22199/issn.0717-6279-2020-02-0029
Artículos
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras
1University of Mazandaran, Dept. of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran. e-mail: taghavi@umz.ac.ir
2 University of Mazandaran, Dept. of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran. e-mail: razeghi.mehran19@yahoo.com
Let A be a prime ∗-algebra with unit I and a nontrivial projection. Then the map Φ : A → A satisfies in the following condition
Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B)
where A⋄ B = A∗B −B∗A for all A, B ∈ A, is additive. Moreover, if Φ(αI) is self-adjoint operator for α ∈ {1, i} then Φ is a ∗-derivation.
Keywords: New product derivation: Prime ∗-algebra; Additive map
Acknowledgments
The authors would like to thank anonymous referee for a thorough and detailed report with many helpful comments and suggestions.
References
[1] Z. Bai and S. Du, “The structure of nonlinear lie derivation on von Neumann algebras”, Linear algebra and its applications, vol. 436, no. 7, pp. 2701-2708, Apr. 2012, doi: 10.1016/j.laa.2011.11.009. [ Links ]
[2] E. Christensen, “Derivations of nest algebras”, Mathematische annalen, vol. 229, no. 2, pp. 155-161, Jun. 1977, doi: 10.1007/BF01351601. [ Links ]
[3] J. Cui and C.-K. Li, “Maps preserving product XY-YX∗ on factor von Neumann algebras”, Linear algebra and its applications , vol. 431, no. 5-7, pp. 833-842, 2009, doi: 10.1016/j.laa.2009.03.036. [ Links ]
[4] J. Dixmier, C*-algebras, vol. 15. Amsterdam: North-Holland Publ. Co., 1977. [On line]. Available: https://bit.ly/2SenaED [ Links ]
[5] C. Li, F. Zhao, and Q. Chen, “Nonlinear maps preserving product X∗Y + Y∗X on von Neumann algebras”, Bulletin of the iranian mathematical society, vol. 44, no. 3, pp. 729-738, Jun. 2018, doi: 10.1007/s41980-018-0048-3. [ Links ]
[6] R. V. Kadison and J. R. Ringrose,Fundamentals of the theory of operator algebras, vol. 1. New York: Academic Press, 1983. [On line]. Available: https://bit.ly/3f0Wm4J [ Links ]
[7] R. V. Kadison and R. Ringrose, Fundamentals of the theory of operator algebras, vol. 2, New York: Academic Press , 1986. [On line]. Available: https://bit.ly/3aLf0dz [ Links ]
[8] C. Li , F. Lu, and X. Fang, “Non-linear ξ-Jordan *-derivations on von Neumann algebras”, Linear and multilinear algebra, vol. 62, no. 4, pp. 466-473, Apr. 2013, doi: 10.1080/03081087.2013.780603. [ Links ]
[9] C. Li , F. Lu, and X. Fang, “Nonlinear mappings preserving product XY + YX∗ on factor von Neumann algebras”, Linear algebra and its applications , vol. 438, no. 5, pp. 2339-2345, Mar. 2013, doi: 10.1016/j.laa.2012.10.015. [ Links ]
[10] C. R. Miers, “Lie homomorphisms of operator algebras”, Pacific journal of mathematics. vol. 38, no. 3, pp. 717-735, 1971. [On line]. Available: https://bit.ly/3bPIg43 [ Links ]
[11] L. Molnár, “A condition for a subspace of B(H) to be an ideal”, Linear algebra and its applications , vol. 235, pp. 229-234, Mar. 1996. doi: 10.1016/0024-3795(94)00143-X. [ Links ]
[12] S. Sakai, “Derivations of W∗ -Algebras”, The annals of mathematics, vol. 83, no. 2, pp. 273-279, Mar. 1966, doi: 10.2307/1970432. [ Links ]
[13] P. Šemrl, “Additive derivations of some operator algebra”, Illinois journal of mathematics, vol. 35, no. 2, pp. 234-240, Jun. 1991, doi: 10.1215/ijm/1255987893. [ Links ]
[14] P. Šemrl , “Ring derivations on standard operator algebras”, Journal of functional analysis, vol. 112, no. 2, pp. 318-324, Mar. 1993, doi: 10.1006/jfan.1993.1035. [ Links ]
[15] A. Taghavi, V. Darvish, and H. Rohi, “Additivity of maps preserving products AP ±P A ∗ on C ∗-algebras”, Mathematica slovaca, vol. 67, no. 1, pp. 213-220, Feb. 2017, doi: 10.1515/ms-2016-0260. [ Links ]
[16] A. Taghavi , H. Rohi , andV. Darvish , “Non-linear *-Jordan derivations on von Neumann algebras”,Linear and Multilinear Algebra, vol. 64, no. 3, pp. 426-439, May 2015, doi: 10.1080/03081087.2015.1043855. [ Links ]
[17] W. Yuand J. Zhang, “Nonlinear ∗-lie derivations on factor von Neumann algebras”, Linear algebra and its applications , vol. 437, no. 8, pp. 1979-1991, Oct. 2012, doi: 10.1016/j.laa.2012.05.032. [ Links ]
[18] F. Zhang, “Nonlinear skew Jordan derivable maps on factor von Neumann algebras”, Linear and Multilinear Algebra , vol. 64, no. 10, pp. 2090-2103, Jan. 2016, doi: 10.1080/03081087.2016.1139035. [ Links ]
Received: June 30, 2019; Accepted: July 30, 2019