Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.39 no.2 Antofagasta abr. 2020
http://dx.doi.org/10.22199/issn.0717-6279-2020-02-0027
Artículos
Fuzzy δ∗-almost continuous and fuzzy δ∗-continuous functions in mixed fuzzy ideal topological spaces
1Tripura University, Dept. of Mathematics, Agartala, TR, India. e-mail: tripathybc@gmail.com
2Central Institute of Technology, Dept. of Mathematics, Kokrajhar, AS, India. e-mail: gautomofcit@gmail.com
In this paper we introduce two new classes of functions between mixed fuzzy topological spaces, namely fuzzy δ∗-almost continuous and fuzzy δ∗-continuous functions and investigate some of their properties. The description of these two types of functions facilitated by the introduction of generalized open sets, called fuzzy δ-preopen sets, fuzzy δ-precluster point, fuzzy preopen sets, fuzzy δ-pre-q-neighbourhoods.
Keywords: Fuzzy δ-preopen set; Fuzzy δ-regular open set; Fuzzy δ-pre neighbourhood; Fuzzy δ-regular neighbourhood
Acknowledgement.
The authors thank the unanimous reviewer for the comments on the first draft of the article.
References
[1] A. Alexiewicz and Z. Semadeni, “A generalization of two norm spaces”, Bulletin of the Polish Academy of Sciences Mathematics, vol. 6, pp. 135-139, 1958. [ Links ]
[2] C. I. Chang, “Fuzzy topological spaces”,Journal of mathematical analysis and applications, vol. 24, no. 1, pp. 182-190, Oct. 1968, doi: 10.1016/0022-247x(68)90057-7. [ Links ]
[3] A. Chilana, “The space of bounded sequences with the mixed topology”,Pacific journal of mathematics, vol. 48, no. 1, pp. 29-33, Sep. 1973, doi: 10.2140/pjm.1973.48.29. [ Links ]
[4] J. B. Cooper, “The strict topology and spaces with mixed topologies”,Proceedings of the American Mathematical Society, vol. 30, no. 3, pp. 583-583, Nov. 1971, doi: 10.1090/s0002-9939-1971-0284789-2. [ Links ]
[5] J. B. Cooper, “The Mackey topology as a mixed topology”,Proceedings of the American Mathematical Society , vol. 53, no. 1, pp. 107-112, Jan. 1975, doi: 10.1090/s0002-9939-1975-0383059-5. [ Links ]
[6] N. R. Das and P. B. Baishya, “Mixed fuzzy topological spaces”, Journal of fuzzy mathematics, vol. 3, no. 4, pp. 777-784, 1995. [ Links ]
[7] M. Ganster, D. N. Georgiou, S. Jafari, and S. P. Moshokoa, “On some applications of fuzzy points”,Applied general topology, vol. 6, no. 2, pp. 119-133, Oct. 2005, doi: 10.4995/agt.2005.1951. [ Links ]
[8] S. Ganguly and D. Singha, “Mixed topology for a bi-topological spaces”, Bulletin of the Calcutta Mathematical Society , vol. 76, pp. 304-314, 1984. [ Links ]
[9] S. Ganguly and S. Saha, “A note on δ-continuity and δ-connected sets in fuzzy set theory”, Simon Stevin, vol. 62, pp. 127-141, 1988. [ Links ]
[10] M. Alam and V. D. Esteruch, “A contribution to fuzzy subspaces”, Applied general topology , vol. 1, no. 3, pp. 13-23, 2002. [On line]. Available: https://bit.ly/3f0G8sl [ Links ]
[11] K. Shravan and B. C. Tripathy, “Multiset mixed topological space”,Soft computing, vol. 23, no. 20, pp. 9801-9805, Feb. 2019, doi: 10.1007/s00500-019-03831-9. [ Links ]
[12] B. C. Tripathyand G. C. Ray, “On mixed fuzzy topological spaces and countability”,Soft computing , vol. 16, no. 10, pp. 1691-1695, May 2012, doi: 10.1007/s00500-012-0853-1. [ Links ]
[13] B. C. Tripathy and G. C. Ray , “Mixed fuzzy ideal topological spaces”,Applied mathematics and computation, vol. 220, pp. 602-607, Sep. 2013 doi: 10.1016/j.amc.2013.05.072. [ Links ]
[14] B. C. Tripathyand G. C. Ray , “On δ-continuity in mixed fuzzy topological spaces”,Boletim da Sociedade Paranaense de matemática, vol. 32, no. 2, pp. 175-187, Sep. 2014, doi: 10.5269/bspm.v32i2.20254. [ Links ]
[15] R. H. Warren, “Neighborhoods, bases and continuity in fuzzy topological spaces”,Rocky mountain journal of mathematics, vol. 8, no. 3, pp. 459-470, Sep. 1978, doi: 10.1216/rmj-1978-8-3-459. [ Links ]
[16] A. Wiweger, “Linear spaces with mixed topology”,Studia mathematica, vol. 20, no. 1, pp. 47-68, 1961, doi: 10.4064/sm-20-1-47-68. [ Links ]
[17] L. A. Zadeh, “Fuzzy sets”,Information and control, vol. 8, no. 3, pp. 338-353, Jun. 1965, doi: 10.1016/s0019-9958(65)90241-x. [ Links ]
Received: April 30, 2019; Accepted: December 30, 2019