SciELO - Scientific Electronic Library Online

 
vol.39 número2A note on modified third-order Jacobsthal numbersFuzzy δ∗-almost continuous and fuzzy δ∗-continuous functions in mixed fuzzy ideal topological spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.2 Antofagasta abr. 2020

http://dx.doi.org/10.22199/issn.0717-6279-2020-02-0026 

Artículos

On minimal λco-open sets

1Universidad de la Costa, Dept. de Ciencias Naturales y Exactas, Barranquilla, Colombia. e-mail: ennisrafael@gmail.com

2University of Garmian, Mathematics Dept., Kalar, Iraq. e-mail: sarhad.faiq@garmian.edu.krd

Abstract

We introduce and discuss the notions of minimal λco-open sets in topological spaces. We establish some of it basic fundamental properties of minimal λco-open. We show that the notions of minimal open sets and minimal λco-open are independent and finally we obtain some application of a minimal λco-open sets.

Keywords: On minimal λco-Open sets; λco-locally finite space

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] B. Ahmad and S. Hussain. “Properties of γ-operations on topological spaces”, Aligarh bulletin of mathematics, vol. 22, no. 1, pp. 45-51, 2003. [ Links ]

[2] C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, “Minimal open sets on generalized topological space”, Proyecciones (Antofagasta. On line), vol. 36, no. 4, pp. 739-751, Dec. 2017, doi: 10.4067/S0716-09172017000400739. [ Links ]

[3] S. Hussain andB. Ahmad , “On minimal γ-open sets”, European journal of pure applied mathematics, vol. 2, no. 3, pp. 338-351, 2009. [On line]. Available: https://bit.ly/2YaO0S5Links ]

[4] S. Kasahara, “Operation-compact spaces”, Mathematica japonica, vol. 24, no. 1, pp. 97-105, 1979. [ Links ]

[5] A. B. Khalaf and S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011. [ Links ]

[6] A. B. Khalaf and S. F. Namiq , “Generalized λ-closed sets and (λ, γ)∗-continuous functions”, International journal of scientific engineering research, vol. 3, no. 12, Dec. 2012. [On line]. Available: https://bit.ly/2zHdtshLinks ]

[7] A, B. Khalaf and S. F. Namiq , “λ-open sets and λ-separation axioms in topological spaces”, Journal of advanced studies in topology, vol. 4, no. 1, pp. 150-158, 2013, doi: 10.20454/jast.2013.528. [ Links ]

[8] A, B. Khalaf and S. F. Namiq , “Generalized λ-closed sets and (λ, γ)∗-continuous function”, Journal of Garmyan University, vol. 4, pp. 1-17, Jul. 2017, doi: 10.24271/garmian.121 . [ Links ]

[9] A, B. Khalaf and S. F. Namiq , “λβc-connected spaces and λβc components”, Journal of Garmyan University , vol. 4, pp. 73-85, Jul. 2017, doi: 10.24271/garmian.126. [ Links ]

[10] A. B. Khalaf, H. M. Darwesh, andS. F. Namiq , “λc-connected spaces via λc -open sets”,Journal of Garmyan University , vol. 1, no. 12, pp. 15-29, Mar. 2017, doi: 10.24271/garmian.112.3. [ Links ]

[11] S. F. Namiq , “ON Minimal λ-open sets”, International journal of scientific engineering research , vol. 5, no. 10, pp. 487-491, Oct. 2014. [On line]. Available: https://bit.ly/2VJsG4jLinks ]

[12] N. Levine, “Semi-open sets and semi-continuity in topological spaces”, The american mathematical monthly, vol. 70, no. 1, pp. 36-41, Jan. 1963, doi: 10.1080/00029890.1963.11990039. [ Links ]

[13] F. Nakaoka and N. Oda, “Some applications of minimal open sets”, International journal of mathematics and mathematical sciences, vol. 27, no. 8, pp. 471-476, 2001, doi: 10.1155/S0161171201006482. [ Links ]

[14] S. F. Namiq , “λ − R0 and λ − R1 spaces”, Journal of Garmyan University , vol. 4, no. 3, 2014. [ Links ]

[15] S. F. Namiq , “λβc-open sets and topological properties”, Journal of Garmyan University , vol. 4, pp. 18-42, Jul. 2017, doi: 10.24271/garmian.122. [ Links ]

[16] S. F. Namiq, “Contra (λ, γ)*-continuous functions”,Journal of Garmian University, vol. 4, pp. 86-103, Jul. 2017, doi: 10.24271/garmian.127. [ Links ]

[17] S. F. Namiq , “Generalized λc-open set”, International journal of scientific engineering research , vol. 8, no. 6, pp. 2161-2174, Jun. 2017. [On line]. Available: https://bit.ly/3cWYlVILinks ]

[18] S. F. Namiq , “λsc-open sets and topological properties”, Journal of Garmyan University , 2014. [On line]. Available: https://bit.ly/2SgIOZ7Links ]

[19] S. F. Namiq , “λc-separation axioms via λc-open sets”, International journal of scientific engineering research , vol. 8, no. 5, pp. 17-33, May 2017. [On line]. Available: https://bit.ly/35k6e55Links ]

[20] S. F. Namiq , “λsc-connected spaces via λsc-open sets”, Journal of Garmyan University , vol. 4, no. 1, pp. 1- 14, Jan. 2017, doi: 10.24271/garmian.112.2 [ Links ]

[21] H. M. Darwesh, S. F. Namiq , and W. K. Kadir, “Maximal λc open sets,” in ICNS 2016, 2016, pp. 3-8. [On line]. Available: https://bit.ly/3d7KEnhLinks ]

[22] S. F. Namiq , “λ-Connected Spaces Via λ-Open Sets”, Journal of Garmyan University , vol. 7, pp. 165-178, 2015. [ Links ]

[23] S. F. Namiq , “On minimal λαc-open sets”, submit. [ Links ]

[24] S. F. Namiq , “λco-open sets and topological properties”, submit. [ Links ]

[25] S. F. Namiq , “λrc-open sets and topological properties”, submit. [ Links ]

[26] H. Ogata, “Operations on topological spaces and associated topology”, Mathematica japonica , vol. 36, no. 1, pp. 175-184, 1991. [ Links ]

[27] E. Rosas andS. F. Namiq , “On minimal λrc-open sets”, Italian journal of pure and applied mathematics, no. 43, pp. 868-877, 2020. [On line]. Available https://bit.ly/3bP82pkLinks ]

[28] J. N. Sharma and J. P. Chauhan, Topology (General and algebraic). Krishna Prakashan Media, 2011. [ Links ]

[29] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Transactions of the American Mathematical Society, vol. 41, no. 3, pp. 375-375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7. [ Links ]

Received: May 30, 2019; Accepted: January 30, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License