SciELO - Scientific Electronic Library Online

 
vol.39 número2On rough convergence of triple sequence space of Bernstein operator of fuzzy numbers defined by a metricComputing the metric dimension of Kayak Paddles graph and Cycles with chord índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.2 Antofagasta abr. 2020

http://dx.doi.org/10.22199/issn.0717-6279-2020-02-0017 

Artículos

Restricted triangular difference mean graphs

1Govindammal Aditanar College for Women, Dept. of Mathematics, Research Centre, Tiruchendur, TN, India. e-mail: jeyajeyanthi@rediffmail.com

2Manonmaniam Sundaranar University, Research Scholar, Regn. No.12208, Tirunelveli, TN, India e-mail: selvm80@yahoo.in

3Government Arts College (Autonomous), Dept. of Mathematics, Salem, TN, India. e-mail: aymar_padma@yahoo.co.in

Abstract

Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f∗(E(G)) is a sequence of consecutive triangular numbers T 1 , T 2 , T 3 , ..., T q , then the function f is said to be restricted triangular difference mean. A graph that admits restricted triangular difference mean labeling is called restricted triangular difference mean graph. In this paper, we investigate restricted triangular difference mean behaviour of some standard graph.

Keywords: Restricted triangular difference mean labeling

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] F. Harary,Graph theory. Reading, MA: Addison-Wesley, 1972. [ Links ]

[2] J. Gallian, “A dynamic survey of graph labeling”, 22th ed. The electronics journal of combinatorics, vol. # DS6, p. 535, 2019, doi: 10.37236/27 [ Links ]

[3] P. Jeyanthi, M. Selvi, and D. Ramya, “Triangular difference mean graphs”, International journal of mathematical combinatorics , to appear. [ Links ]

Received: January 30, 2019; Accepted: November 30, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License