SciELO - Scientific Electronic Library Online

vol.39 issue1A new approach for solving linear fractional integro-differential equations and multi variable order fractional differential equationsFurter common local spectral properties for bounded linear operators author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.1 Antofagasta Feb. 2020 


Hermite-Hadamard type fractional integral inequalities for products of two MT (r;g,m,φ)- preinvex functions

1 University Ismail Qemali Vlora, Dept. of Mathematics, Vlora, Albania. E-mail:

2 University Ismail Qemali Vlora, Dept. of Mathematics, Vlora, Albania. E-mail:


A new class of MT (r;g,m,φ)- preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving products of two MT (r;g,m,φ)- preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for products of two MT (r;g,m,φ)- preinvex functions via Riemann-Liouville fractional integrals are established. These general inequalities give us some new estimates for the left-hand side of Gauss-Jacobi type quadrature formula and Hermite-Hadamard type fractional integral inequalities. At the end, some conclusions and future research are given.

Keywords: Hermite-Hadamard type inequality; Hölder’s inequality; Minkowski’s inequality; Cauchy’s inequality; Power mean inequality; Riemann-Liouville fractional integral; s-convex function in the second sense; m-invex; P -function

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


[1] A. Akkurt and H. Yildirim, “On some fractional integral inequalities of Hermite-Hadamard type for r-preinvex functions”, Khayyam journal of mathematics, vol. 2, no. 2, pp. 120-127, 2016, doi: 10.22034/kjm.2016.40640. [ Links ]

[2] T. Antczak, “Mean value in invexity analysis”, Nonlinear analysis: theory, methods & applications, vol. 60, no. 8, pp. 1473-1484, Mar. 2005, doi: 10.1016/ [ Links ]

[3] F. Chen, “A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals”, Italian journal of pure applied mathematics, no. 33, pp. 299-306, 2014. [On line]. Available: ]

[4] F. X. Chen and S. H. Wu, “Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions”, Journal of nonlinear sciences and applications, vol. 9, no. 2, pp. 705-716, 2016, doi: 10.22436/jnsa.009.02.32. [ Links ]

[5] Y. M. Chu, M. A. Khan, T. U. Khan, and T. Ali, “Generalizations of Hermite-Hadamard type inequalities for MT -convex functions”, Journal of nonlinear sciences and applications , vol. 9, no. 6, pp. 4305-4316, 2016, doi: 10.22436/jnsa.009.06.72. [ Links ]

[6] Y. M. Chu , G. D. Wang, and X. H. Zhang, “Schur convexity and Hadamard’s inequality”, Mathematical inequalities & applications, vol. 13, no. 4, pp. 725-731, 2010, doi: 10.7153/mia-13-51. [ Links ]

[7] S. S. Dragomir, J. Pěcarić, and L. E. Persson, “Some inequalities of Hadamard type”, Soochow journal of mathematics, vol. 21, no. 3, pp. 335-341, Jul. 1995. [On line]. Available: ]

[8] T. S. Du, J. G. Liao, and Y. J. Li, “Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions”, Journal of nonlinear sciences and applications , vol. 9, no. 5, pp. 3112-3126, 2016, doi: 10.22436/jnsa.009.05.102. [ Links ]

[9] H. Hudzik and L. Maligranda, “Some remarks on s-convex functions”, Aequationes mathematicae, vol. 48, no. 1, pp. 100-111, Aug. 1994, doi: 10.1007/BF01837981. [ Links ]

[10] W. D. Jiang, D. W. Niu, and F. Qi, “Some inequalties of Hermite-Hadamard type for r-φ-preinvex functions”, Tamkang journal of mathematics, vol. 45, no. 1, pp. 31-38, 2014, doi: 10.5556/j.tkjm.45.2014.1261. [ Links ]

[11] H. Kavurmaci, M. Avci and M. E. Özdemir, “New inequalities of Hermite-Hadamard type for convex functions with applications”, Jun. 2010, arXiv:1006.1593v1Links ]

[12] M. A. Khan , Y. Khurshid, T. Ali , and N. Rehman,”Inequalities for three times differentiable functions”, The Punjab university journal of mathematics, vol. 48, no. 2, pp. 35-48, 2016. [On line]. Available: ]

[13] M. A. Khan , Y. Khurshid , andT. Ali , “Hermite-Hadamard inequality for fractional integrals via η-convex functions”, Acta mathematica universitatis comenianae, vol. 86, no. 1, pp. 153-164, 2017. [On line]. Available: ]

[14] W. Liu, “New integral inequalities involving beta function via P -convexity”, Miskolc mathematical notes (Online), vol. 15, no. 2, pp. 585-591, 2014, doi: 10.18514/mmn.2014.660. [ Links ]

[15] W. Liu, W. Wen and J. Park, “Ostrowski type fractional integral inequalities for MT -convex functions”, Miskolc mathematical notes (Online) , vol. 16, no. 1, pp. 249-256, 2015, doi: 10.18514/MMN.2015.1131. [ Links ]

[16] W. Liu , W. Wen andJ. Park , “Hermite-Hadamard type inequalities for MT -convex functions via classical integrals and fractional integrals”, Journal of nonlinear sciences and applications , vol. 9, no. 3, pp. 766-777, 2016, doi: 10.22436/jnsa.009.03.05. [ Links ]

[17] M. E. Özdemir , E. Set, and M. Alomari, “Integral inequalities via several kinds of convexity”, Creative mathematics and informatics, vol. 20, no. 1, pp. 62-73, 2011. [On line]. Available: ]

[18] R. Pini, “Invexity and generalized convexity”, Optimization, vol. 22, no. 4. pp. 513- 525, Jun. 1991, doi: 10.1080/02331939108843693. [ Links ]

[19] F. Qi and B. Y. Xi, “Some integral inequalities of Simpson type for GA− ɛ-convex functions”, Georgian mathematical journal, vol. 20, no. 4, pp. 775-788, Oct. 2013, doi: 10.1515/gmj-2013-0043. [ Links ]

[20] H. N. Shi, “Two Schur-convex functions related to Hadamard-type integral inequalities”, Publicationes mathematicae debrecen, vol. 78, no. 2, pp. 393-403, 2011. [On line]. Available: ]

[21] D. D. Stancu, G. Coman, O. Agratini, and Trîmbitaș Radu, Analiză numerică și teoria aproximării, vol. 2. Cluj-Napoca: Presa Universitară Clujeana, 2001. [ Links ]

[22] M. Tunç andH. Yildirim , “On MT -convexity”, May 2012. arXiv:1205.5453v1Links ]

[23] X. M. Yang, X. Q. Yang, and K. L. Teo, “Generalized invexity and generalized invariant monotonicity”, Journal of optimization theory and applications, vol. 117, no. 3, pp. 607-625, Jun. 2003, doi: 10.1023/A:1023953823177. [ Links ]

[24] X. M. Zhang, Y. M. Chu andX. H. Zhang , “The Hermite-Hadamard type inequality of GA-convex functions and its applications”, Journal of inequalities and applications, Art. ID. 507560, Dec. 2010, doi: 10.1155/2010/507560. [ Links ]

Received: February 2019; Accepted: July 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License