Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.39 no.1 Antofagasta feb. 2020
http://dx.doi.org/10.22199/issn.0717-6279-2020-01-0007
Artículos
General solution and hyperstability results for a cubic radical functional equation related to quadratic mapping
1 Ibn Tofaïl University, Dept. of Mathematics, Kenitra, Morocco. e-mail: rachid2810@gmail.com
2 Ibn Tofaïl University, Dept. of Mathematics, Kenitra, Morocco e-mail: muaadh1979@hotmail.fr
3 Ibn Tofaïl University, Dept. of Mathematics, Kenitra, Morocco e-mail: samkabbaj@yahoo.fr
The aim of this paper is to introduce and solve the following radical cubic functional equation
Also, we investigate some stability results for the considered equation in Banach spaces.
Keywords: Stability; Hyperstability; Radical functional equations
[1] L. Aiemsomboon and W. Sintunavarat, “On generalized hyperstability of a general linear equation”, Acta mathematica hungarica, vol. 149, no. 2, pp. 413-422, Aug. 2016, doi: 10.1007/s10474-016-0621-2. [ Links ]
[2] M. Almahalebi, A. Charifi and S. Kabbaj, “Hyperstability of a Cauchy functional equation”, Journal of nonlinear analysis and optimization: theory & applications, vol. 6, no. 2, pp. 127-137, 2015. [On line]. Available: https://bit.ly/2O7wqZf [ Links ]
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces”, Journal of the mathematical society of Japan, vol. 2, no. 1-2, pp. 64-66, 1950, doi: 10.2969/jmsj/00210064. [ Links ]
[4] D. G. Bourgin, “Classes of transformations and bordering transformations”, Bulletin of the American mathematical society, vol. 57, no. 4, pp. 223-237, 1951, doi: 10.1090/S0002-9904-1951-09511-7. [ Links ]
[5] J. Brzdęk and J. Tabor, “A note on stability of additive mappings”, in Stability of mappings of Hyers-Ulam type, T. M. Rassias, Ed. Palm Harbor, FL: Hadronic Press, 1994, pp. 19-22. [ Links ]
[6] J. Brzdęk, J. Chudziak, and Z. Páles, “A fixed point approach to stability of functional equations”, Nonlinear analysis: theory, methods & applications, vol. 74, no. 17, pp. 6728-6732, Dec. 2011, doi: 10.1016/j.na.2011.06.052. [ Links ]
[7] J. Brzdęk , Hyperstability of the Cauchy equation on restricted domains, Acta mathematica hungarica , vol. 141, no. 1-2, pp. 58-67, Oct. 2013, doi: 10.1007/s10474-013-0302-3. [ Links ]
[8] J. Brzdęk , “Remark 3. 16th International Conference on Functional Equations and Inequalities, Będlewo, Poland, May 17-23, 2015”, Annales universitatis paedagogicae cracoviensis. Studia mathematica, vol. 14, no. 1, p. 196, Dec. 2015, doi: 10.1515/aupcsm-2015-0012. [ Links ]
[9] M. Eshaghi Gordji, H. Khodaei, A. Ebadian, and G. H. Kim, “Nearly radical quadratic functional equations in p-2-normed spaces”, Abstract and applied analysis, Art. ID. 896032, 2012, doi: 10.1155/2012/896032. [ Links ]
[10] D. H. Hyers, “On the stability of the linear functional equation”, Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 4 pp. 222-224, Apr. 1941, doi: 10.1073/pnas.27.4.222. [ Links ]
[11] H. Khodaei , M. Eshaghi Gordji , S. S. Kim, and Y. J. Cho, “Approximation of radical functional equations related to quadratic and quartic mappings”, Journal of mathematical analysis and applications, vol. 395, no.1, pp. 284-297, Nov. 2012, doi: 10.1016/j.jmaa.2012.04.086. [ Links ]
[12] S. S. Kim , Y. J. Cho andM. Eshaghi Gordji , “On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations”, Journal of inequalities and applications, Art. ID. 186, Aug. 2012, doi: 10.1186/1029-242X-2012-186. [ Links ]
[13] G. Maksa and Z. Pales, “Hyperstability of a class of linear functional equations”, Acta mathematica academiae paedagogicae nyiregyhaziensis, vol. 17, no. 2, pp. 107-112, 2001. [On line]. Available: https://bit.ly/2RzfnBt [ Links ]
[14] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proceeding of the American mathematical society, vol. 72, no. 1, pp. 297-300, 1978, doi: 10.1090/S0002-9939-1978-0507327-1. [ Links ]
[15] Th. M. Rassias, “Problem 16, 2°. The Twenty-seventh International Symposium on Functional Equations, August 14-24, 1989, Bielsko-BiałKatowice-Kraków, Poland”, Aequationes mathematicae, vol. 39, no. 2-3, pp. 292-293, Apr. 1990, doi: 10.1007/BF01833155. [ Links ]
[16] Th. M. Rassias, “On a modified Hyers-Ulam sequence”, Journal of mathematical analysis and applications , vol. 158, no. 1, pp. 106-113, Jun. 1991, doi: 10.1016/0022-247X(91)90270-A. [ Links ]
[17] S. M. Ulam, Problems in modern mathematics. New York, NY: John Wiley & Sons, 1964. [ Links ]
Received: December 2018; Accepted: June 2019