SciELO - Scientific Electronic Library Online

 
vol.39 issue1Nondifferentiable higher-order duality theorems for new type of dual model under generalized functions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.39 no.1 Antofagasta Feb. 2020

http://dx.doi.org/10.22199/issn.0717-6279-2020-01-0001 

Artículos

Strongly convexity on fractal sets and some inequalities

Rainier V. Sánchez C.1 
http://orcid.org/0000-0002-6739-5102

José E. Sanabria2 
http://orcid.org/0000-0002-9749-4099

1Instituto Superior de Formación Docente Salomé Ureña, Departamento de Matemáticas, Santo Domingo, República Dominicana. E-mail: rainiersan76@gmail.com

2Universidad de Sucre, Departamento de Matemáticas, Sincelejo, Colombia. E-mail: jesanabri@gmail.com

Abstract

We introduce a generalization of the concept of a strongly convex function on a fractal set, study some algebraic properties and establish Jensen-type and Hermite-Hadamard-type inequalities.

Keywords: Convex function; Generalized convex function; Strongly convex function; Fractal set

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

[1] A. Azócar, J. Giménez, K. Nikodem, and J. L. Sánchez, “On strongly midconvex functions”, Opuscula mathematica, vol. 31, no. 1, pp. 15-26, 2011, doi:10.7494/OpMath.2011.31.1.15. [ Links ]

[2] G.-S. Chen, “A generalized Young inequality and some new results on fractal space”, Jul. 2011. arXiv: 1107.5222v1 [ Links ]

[3] K. M. Kolwankar and A. D. Gangal, “Fractional differentiability of nowhere differentiable functions and dimensions”, Chaos, vol. 6, no. 4, pp. 505-513, 1996, doi: 10.1063/1.166197. [ Links ]

[4] T. Lara, N. Merentes, R. Quintero and E. Rosales, “On strongly mconvex functions”, Mathematica aeterna, vol. 5, no. 3, pp. 521-535, 2015. [On line]. Available: https://bit.ly/2G6kHpFLinks ]

[5] N. Merentes andK. Nikodem , “Remarks on strongly convex functions”, Aequationes mathematicae, vol. 80, no. 1-2, pp. 193-199. 2010, doi: 10.1007/s00010-010-0043-0. [ Links ]

[6] H. Mo, X. Sui and D. Yu, “Generalized convex functions on fractal sets and two related inequalities”, Abstract and applied analysis, Art. ID 636751, 2014, doi: 10.1155/2014/636751. [ Links ]

[7] L. Montrucchio, “Lipschitz policy functions for strongly concave optimization problems”, Journal of mathematical economics, vol. 16, no. 3, pp. 259-273, 1987, doi: 10.1016/0304-4068(87)90012-7. [ Links ]

[8] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions”, Soviet mathematics. Doklady, vol. 166, no. 2, pp. 72-75, 1966.[On line]. Available: https://bit.ly/2v9BrtXLinks ]

[9] A. W. Roberts and D. E. Varberg, “Convex functions”, New York, NY: Academic Press, 1973. [ Links ]

[10] W. Sun, “Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities”, Journal of nonlinear sciences and applications, vol. 10, no. 11, pp. 5869-5880, 2017, doi: 10.22436/jnsa.010.11.24. [ Links ]

[11] X.-J. Yang, “Advanced local fractional calculus and its applications”, New York, NY: World Science, 2012. [ Links ]

[12] X.-J. Yang, “Expression of generalized newton iteration method via generalized local fractional Taylor series”, Jun. 2012. arXiv:1106.2780v2 [ Links ]

Received: November 2018; Accepted: November 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License