Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
-
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.38 no.5 Antofagasta dic. 2019
http://dx.doi.org/10.22199/issn.0717-6279-2019-05-0069
Artículos
On star coloring of degree splitting of join graphs
1University College of Engineering, (Anna U. Constitutent College), Nagercoil, TN, India. E-mail: ulagammal2877@gmail.com
2 University College of Engineering, (Anna U. Constitutent College), Nagercoil, TN, India. E-mail: vernoldvivin@yahoo.in
A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χ s (G) of G is the least number of colors needed to star color G. In this paper, we have generalized the star chromatic number of degree splitting of join of any two graph G and H denoted by G + H, where G is a path graph and H is any simple graph. Also, we determine the star chromatic number for degree splitting of join of path graph G of order m with path P n , complete graph K n and cyclevgraph C n .
Keywords: Star coloring; Complete graph; Path and cycle.
References
[1] M. Albertson, G. Chappell, H. Kierstead, A. Kündgen and R. Ramamurthi, “Coloring with no 2-colored P4’s”, The electronic journal of combinatorics, vol. 11, no. 1, 2004. [On line]. Available: https://bit.ly/2ttZpiC [ Links ]
[2] J. Bondy and U. Murty, Graph theory with applications. London: MacMillan, 1976. [ Links ]
[3] J. Clark and D. Holton, A first look at graph theory. World Scientific, 1969. [ Links ]
[4] T. Coleman , J. Moré , “Estimation of sparse Hessian matrices and graph coloring problems”, Mathematical programming, vol. 28, no. 3, pp. 243-270, Oct. 1984, doi: 10.1007/BF02612334. [ Links ]
[5] G. Fertin, A. Raspaud and B. Reed, “Star coloring of graphs”, Journal of graph theory, vol. 47, no. 3, pp. 163-182, Aug. 2004, doi: 10.1002/jgt.20029. [ Links ]
[6] B. Grünbaum, “Acyclic colorings of planar graphs”, Israel journal of mathematics, vol. 14, no. 4, pp. 390-408, Dec. 1973, doi: 10.1007/BF02764716. [ Links ]
[7] F. Harary, Graph theory. New Delhi, Narosa, 1969. [ Links ]
[8] R. Ponraj and S. Somasundaram, “On the degree splitting graph of a graph”, National academy science letters, vol. 27, no. 7-8, pp. 275-278, 2004. [ Links ]
[9] E. Sampathkumar and H. Walikar, “On splitting graph of a graph”, Journal of Karnatak university science, vol. 25-26, pp. 13-16, 1981. [On line]. Available: https://bit.ly/2Er10HZ [ Links ]
Received: October 30, 2018; Accepted: April 30, 2019