SciELO - Scientific Electronic Library Online

vol.38 issue3Radius problem for the class of analytic functions based on Ruscheweyh derivativeA transmuted version of the generalized half-normal distribution author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.3 Antofagasta Aug. 2019 


Hyers-Ulam stability of n th order linear differential equation

R. Murali1 

A. Ponmana Selvan2 

1Sacred Heart College (Autonomous), PG and Research Department of Mathematics, Tirupattur - 635601, Vellore Dt., Tamil Nadu, India. e-mail:

2 Sacred Heart College (Autonomous), PG and Research Department of Mathematics, Tirupattur - 635601, Vellore Dt., Tamil Nadu, India. e-mail:


In this paper, we investigate the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the homogeneous linear differential equation of nth order with initial and boundary conditions by using Taylor’s Series formula.

Keywords: Hyers-Ulam stability; Hyers-Ulam-Rassias stability; Initial and boundary conditions; Taylor’s series method

Mathematics Subject Classification (2010):  34K20; 26D10; 31K20; 39A10; 34A40; 39B82

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


[1] S. Ulam, A collection of mathematical problems, New York, NY: Interscience Publishers, 1960. [ Links ]

[2] D. Hyers, “On the stability of the linear functional equation”, Proceedings of the National Academy of Sciences, vol. 27, no. 4, pp. 222-224, Apr. 1941, doi: 10.1073/pnas.27.4.222. [ Links ]

[3] T. Rassias, “On the stability of the linear mapping in Banach spaces”,Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-297, Feb. 1978, doi: 10.1090/S0002-9939-1978-0507327-1. [ Links ]

[4] T. Aoki, “On the stability of the linear transformation in Banach spaces.”, Journal of the Mathematical Society of Japan, vol. 2, no. 1-2, pp. 64-66, Sep. 1950, doi: 10.2969/jmsj/00210064. [ Links ]

[5] D. Bourgin, “Classes of transformations and bordering transformations”, Bulletin of the American Mathematical Society, vol. 57, no. 4, pp. 223-238, Jul. 1951, doi: 10.1090/S0002-9904-1951-09511-7. [ Links ]

[6] N. Brillouët-Belluot, J. Brzdęk, and K. Ciepliński, “On some recent developments in Ulams type stability”, Abstract and Applied Analysis, vol. 2012, Art. no. 716936, doi: 10.1155/2012/716936. [ Links ]

[7] M. Burger, N. Ozawa, and A. Thom, “On Ulam stability”, Israel Journal of Mathematics, vol. 193, no. 1, pp. 109-129, May 2012, doi: 10.1007/s11856-012-0050-z. [ Links ]

[8] H. Maeda and A. J. Sommese, “Notes on very ample vector bundles on 3-folds”, Archiv der Mathematik, vol. 85, no. 6, pp. 527-537, Dec. 2005, doi: 10.1007/s00013-005-1445-4. [ Links ]

[9] M. Obloza, “Hyers stability of the linear differential equation”, Rocznik Naukowo-Dydaktyczny. Prace Matematyczne, vol. 13, pp. 259-270, 1993. [On line]. Available: ]

[10] C. Alsina and R. Ger, “On some inequalities and stability results related to the exponential function”, Journal of Inequalities and Applications, vol. 1998, no. 4, pp. 246-904, 1998, doi: 10.1155/S102558349800023X. [ Links ]

[11] S. Takahasi, T. Miura and S. Miyajima, “On the Hyers-Ulam stability of the Banach space valued differential equation y’ = λy”, Bulletin of the Korean Mathematical Society, vol. 39, no. 2, pp. 309-315. [On line]. ]

[12] I. Rus, “Ulam stabilities of ordinary differential equations in Banach space”, Carpathian Journal of Mathematics, vol. 26, no.1, pp. 103-107, 2010. [On line]. Available: ]

[13] G. Wang, M. Zhou, and L. Sun, “Hyers-Ulam stability of linear differential equations of first order”, Applied Mathematics Letters, vol. 21, no. 10, pp. 1024-1028, Oct. 2008, doi: 10.1016/j.aml.2007.10.020. [ Links ]

[14] J. Huang and Y. Li, “Hyers-Ulam stability of linear functional differential equations”,Journal of Mathematical Analysis and Applications, vol. 426, no. 2, pp. 1192-1200, Jun. 2015, doi: 10.1016/j.jmaa.2015.02.018. [ Links ]

[15] J. Huang , S. Jung, andY. Li , “On Hyers-Ulam stability of nonlinear differential equations”,Bulletin of the Korean Mathematical Society , vol. 52, no. 2, pp. 685-697, Mar. 2015, doi:10.4134/BKMS.2015.52.2.685. [ Links ]

[16] Y. Li and Y. Shen, “Hyers-Ulam stability of linear differential equations of second order”,Applied Mathematics Letters , vol. 23, no. 3, pp. 306-309, Mar. 2010, doi: 10.1016/j.aml.2009.09.020. [ Links ]

[17] M. Modebei, O. Olaiya and I. Otaide. “Generalized Hyers-Ulam stability of second order linear ordinary differential equation with initial condition”. Advances in Inequalities and Applications, vol. 2014, no. 36, pp. 1-7, Sep. 2014. [On line]. Available: ]

[18] T. Xu, “On the stability of multi-Jensen mappings in β-normed spaces”,Applied Mathematics Letters , vol. 25, no. 11, pp. 1866-1870, Nov. 2012, doi: 10.1016/j.aml.2012.02.049. [ Links ]

[19] A. Zada, O. Shah, and R. Shah, “Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems”,Applied Mathematics and Computation, vol. 271, pp. 512-518, Nov. 2015, doi: 10.1016/j.amc.2015.09.040. [ Links ]

[20] X. Wang, M. Arif, andA. Zada , “β-Hyers-Ulam-Rassias stability of semilinear nonautonomous impulsive system”, Symmetry, vol. 11, no. 2, Art. No.231, Feb. 2019, doi: 10.3390/sym11020231. [ Links ]

[21] J. Wang, A. Zada , and W. Ali, “Ulam’s-type stability of first-order impulsive differential equations with variable delay in Quasi-Banach spaces”,International Journal of Nonlinear Sciences and Numerical Simulation, vol. 19, no. 5, pp. 553-560, Jul. 2018, doi: 10.1515/ijnsns-2017-0245. [ Links ]

[22] A. Zada and S. Ali, “Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses”,International Journal of Nonlinear Sciences and Numerical Simulation , vol. 19, no. 7-8, pp. 763-774, Dec. 2018, doi: 10.1515/ijnsns-2018-0040. [ Links ]

[23] A. Zada , W. Ali , and C. Park, “Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type”,Applied Mathematics and Computation , vol. 350, pp. 60-65, Jun. 2019, doi: 10.1016/j.amc.2019.01.014. [ Links ]

[24] A. Zada and S. Shah, “Hyers-Ulam stability of first order nonlinear delay differential equations with fractional integrable impulses” Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1196-1205, Oct. 2018. [On line]. Available: ]

[25] A. Zada, S. Shaleena, and T. Li, “Stability analysis of higher order nonlinear differential equations in β -normed spaces”,Mathematical Methods in the Applied Sciences, vol. 42, no. 4, pp. 1151-1166, Mar. 2018, doi: 10.1002/mma.5419. [ Links ]

[26] A. Zada , M. Yar, andT. Li , “Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions”,Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, vol. 17, no. 1, pp. 103-125, Dec. 2018, doi: 10.2478/aupcsm-2018-0009. [ Links ]

[27] K. Ravi, R. Murali and A. Selvan. “Ulam stability of a general nth order linear differential equation with constant coefficients”. Asian Journal of Mathematics and Computer Research, vol. 11, no. 1, pp. 61-68, Jan. 2016. [On line]. Available: ]

[28] K. Ravi, R. Murali andA. Selvan . “Hyers-Ulam stability of nth order linear differential equation with initial and boundary condition”, Asian Journal of Mathematics and Computer Research, vol. 11, no. 3, pp. 201-207, Mar. 2016. [On line]. Available: ]

[29] R. Murali andA. Selvan , “On the generalized Hyers-Ulam stability of linear ordinary differential equations of higher order”, International Journal of Pure and Applied Mathematics, vol. 117, special issue, no. 12 , pp. 317-326, 2017. [On line]. Available: ]

[30] R. Murali andA. Selvan , “Hyers-Ulam stability of nth order differential equation”, Contemporary Studies in Discrete Mathematics, vol. 2, no. 1, pp. 45-50, 2018. [On line]. Available: ]

[31] R. Murali andA. Selvan , “Hyers-Ulam-Rassias stability for the linear ordinary differential equation of third order”, Kragujevac Journal of Mathematics, vol. 42, no. 4, pp. 579-590, 2018. [On line]. Available: ]

[32] R. Murali andA. Selvan , “Hyers-Ulam stability of linear differential equations”, inComputational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation. ICC3 2017. (Communications in Computer and Information Science, vol. 844), G. Ganapathi, A. Subramaniam, M. Graña, S. Balusamy, R. Natarajan, P. Ramanathan, Eds. Singapore: Springer, 2018, pp. 183-192, doi :10.1007/978-981-13-0716-4_15. [ Links ]

[33] R. Murali andA. Selvan , “Hyers-Ulam stability of nth order system of differential equation”, American International Journal of Research in Science, Technology, Engineering and Mathematics, vol. 26, no. 1, pp. 71-75, 2019. [On line]. Available: ]

Received: May 2018; Accepted: March 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License