SciELO - Scientific Electronic Library Online

 
vol.38 issue3Upper triangular operator matrices and limit points of the essential spectrum author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.3 Antofagasta Aug. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-03-0025 

Articles

Interpolation and approximation from sublattices of C₀(X; R)

1 Universidade Federal de Itajubá, Instituto de Matemática e Computação - IMC. 37500-903 Itajubá, MG, Brasil. e-mail : kaxixi@unifei.edu.br

Abstract

In this paper, we give a proof of a result concerning simultaneous interpolation and approximation from sublattices of the space of real continuous functions vanishing at infinity.

Keywords: Bonsall; Lattices; Interpolation; Approximation

Mathematics Subject Classification (2000): 41A65; 41A05

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

Acknowledgements

The author acknowledges the referees for the valuable comments and suggestions.

References

[1] S. Boel, T. Carlsen and N. Hansen, "A Useful Strengthening of the Stone-Weierstrass Theorem", The American Mathematical Monthly, vol. 108, no. 7, p. 642, 2001, doi: 10.2307/2695271. [ Links ]

[2] F. Bonsall, "Semi-Algebras of Continuous Functions", Proceedings of the London Mathematical Society, vol. s3-10, no.1, pp. 122-140, 1960, doi: 10.1112/plms/s3-10.1.122. [ Links ]

[3] F. Deutsch, "Simultaneous Interpolation and Approximation in Topological Linear Spaces", SIAM Journal on Applied Mathematics, vol. 14, no. 5, pp. 1180-1190, 1966, doi: 10.1137/0114095. [ Links ]

[4] W. Rudin, Real and complex analysis, 3rd ed. Singapore: McGraw-Hill, 1987. [ Links ]

[5] G. Simmons, Introduction to topology and modern analysis. New York: McGraw-Hill, 1963. [ Links ]

[6] H. Wu, "New Stone-Weierstrass Theorem", Advances in Pure Mathematics, vol. 06, no. 13, pp. 943-947, 2016, doi: 10.4236/apm.2016.613071. [ Links ]

Received: April 2017; Accepted: May 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License