SciELO - Scientific Electronic Library Online

vol.38 número1Odd harmonious labeling of super subdivisión graphsClassification of Osborn loops of order 4n índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.1 Antofagasta mar. 2019 


3-product cordial labeling of some snake graphs

P. Jeyanthi1 

A. Maheswari2 

M. Vijayalakshmi3 

1Govindammal Aditanar College for Women, Department of Mathematics, Research Centre, Tiruchendur 628215, Tamilnadu, India. e-mail :

2Kamaraj College of Engineering and Technology, Department of Mathematics, Virudhunagar, India. e-mail :

3Dr. G. U. Pope College of Engineering, Department of Mathematics, Sawyerpuram, Thoothukudi District, Tamil Nadu, India. e-mail:


Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v𝑓 (i) denotes the number of vertices labeled with i, e𝑓 (i) denotes the number of edges xy with 𝑓(x)𝑓(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.

Keywords : cordial labeling; product cordial labeling; 3-product cordial labeling; 3-product cordial graph; alternate triangular snake; doublé alternate triangular snake; triangular snake graph

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


[1] I. Cahit, Cordial Graphs :A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol. 23, pp. 201-207, (1987). [ Links ]

[2] Joseph A. Gallian , A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2017),# DS6. [ Links ]

[3] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972). [ Links ]

[4] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling, SUT Journal of Mathematics, 48, pp. 231-140, (2012). [ Links ]

[5] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling of some graphs, International Journal on Mathematical Combinatorics, Vol. 1, pp. 96-105, (2012). [ Links ]

[6] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling of star graphs, Southeast Asian Bulletin of Mathematics, Vol. 39 (3), pp. 429-437, (2015). [ Links ]

[7] P. Jeyanthi and A. Maheswari, Some results on 3-Product cordial labeling, Utilitas Math., Vol. 99, pp. 215-229, (2016). [ Links ]

[8] R. Ponraj, M. Sivakumar and M. Sundaram, k-Product Cordial Labeling of Graphs, Int. J. Contemp. Math. Sciences, Vol. 7 (15), pp. 733-742, (2012). [ Links ]

[9] M. Sundaram, R. Ponraj and S. Somasundaram, EP-cordial labelings of graphs, Varahmihir Journal of Mathematical Sciences, Vol. 7 (1), pp. 183-194, (2007). [ Links ]

Received: March 2016; Accepted: 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License