SciELO - Scientific Electronic Library Online

 
vol.38 número13-product cordial labeling of some snake graphs índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.1 Antofagasta mar. 2019

http://dx.doi.org/10.4067/S0716-09172019000100001 

Articles

Odd harmonious labeling of super subdivisión graphs

P. Jeyanthi1 

S. Philo2 

M. K. Siddiqui3 

1Govindammal Aditanar College for Women, Department of Mathematics, Research Centre, Tiruchendur - 628 215, Tamil Nadu, India. e-mail: jeyajeyanthi@rediffmail.com

2Manonmaniam Sundaranar University, Research Scholar, Reg. No: 12193, Abishekappatti, Tirunelveli - 627012, India. e-mail: lavernejudia@gmail.com

3COMSATS University Islamabad, Sahiwal Campus, Department of Mathematics, Pakistan. e-mail: kamransiddiqui75@gmail.com

Abstract

A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs.

Keywords : harmonious labeling; odd harmonious labeling; super subdivision of graphs

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, (2017), # DS6. [ Links ]

[2] R. L. Graham and N. J. A. Sloane, On Additive bases and Harmonious Graphs, SIAM J. Algebr. Disc. Meth., 4, pp. 382-404, (1980). [ Links ]

[3] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, (1972). [ Links ]

[4] Z. Liang, Z. Bai, On the Odd Harmonious Graphs with Applications, J. Appl. Math. Comput., 29, pp. 105-116, (2009). [ Links ]

[5] P. Jeyanthi, S. Philo and Kiki A. Sugeng, Odd harmonious labeling of some new families of graphs, SUT Journal of Mathematics, Vol. 51, No. 2, pp. 53-65, (2015). [ Links ]

[6] P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Some Cycle Related Graphs, Proyecciones Journal of Mathematics, Vol. 35, No. 1, pp. 85-98, (2016). [ Links ]

[7] P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Plus Graphs, Bulletin of the International Mathematical Virtual Institute, Vol. 7, pp.515-526, (2017). [ Links ]

[8] P. Jeyanthi, S. Philo, Maged Z. Youssef, Odd Harmonious Labeling of Grid Graphs, Proyecciones Journal of Mathematics , to appear. [ Links ]

[9] P. Selvaraju, P. Balaganesan and J. Renuka, Odd Harmonious Labeling of Some Path Related Graphs, International J. of Math.Sci. and Engg. Appls., 7 (III), pp. 163-170, (2013). [ Links ]

[10] S. K. Vaidya and N. H. Shah, Some New Odd Harmonious Graphs, International Journal of Mathematics and Soft Computing, 1, pp. 9-16, (2011). [ Links ]

[11] S. K. Vaidya, N. H. Shah, Odd Harmonious Labeling of Some Graphs, International J.Math. Combin., 3, pp. 105-112, (2012) [ Links ]

Received: December 2015; Accepted: November 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License