SciELO - Scientific Electronic Library Online

vol.37 número2On estimates for the generalized Fourier-Bessel transform índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.37 no.2 Antofagasta jun. 2018 


Super vertex mean labeling of cycles through different ways

A. Lourdusamy1 

Sherry George2 

1 St.Xavier's College (Autonomous), Department of Mathematics, Palayankottai, Tirunelveli - 627002, India. E-mail :

2 St.Xavier's College (Autonomous), Department of Mathematics, Palayankottai, Tirunelveli - 627002, India. E-mail :


A super vertex mean labeling 𝑓 of a (p,q) - graph G = (V,E) is defined as an injection from E to the set {1,2,3,···,p+q} that induces for each vertex v the label defined by the rule , where Ev denotes the set of edges in G that are incident at the vertex v, such that the set of all edge labels and the induced vertex labels is {1,2,3,···,p+q}. In this paper, we investigate the super vertex mean labeling behavior of cycles by giving various ways by which they can be labeled.

Keywords : Vertex Mean label; Cycles; types of labeling.

Subjclass : Primary 05C38, 05C78.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


[1] B. D. Acharya and K. A. Germina, Vertex-graceful Graphs, Journal of Discrete Mathematical Science and Chryptography, 13 (5), pp. 453-463, (2010). [ Links ]

[2] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16, (2013). [ Links ]

[3] S. W. Golomb, How to Number a Graph, Graph Theroy and Computing (Ed. R.C. Read), Academic Press, New York, pp. 23-27, (1972). [ Links ]

[4] R. L. Graham and N. J. A. Solane, On additive Bases and Harmonious Graphs, SIAM, J. Alg. Discrete Methods, 1, pp. 382-404, (1980). [ Links ]

[5] A. Lourdusamy and M. Seenivasan, Vertex-mean Graphs, International Journal of Mathematical Combinatorics, 3, pp. 114-120, (2011). [ Links ]

[6] A. Lourdusamy and M. Seenivasan, Mean Labelings of Cyclic Snakes, AKCE International Journal of Graphs and Combinatorics, 8 (2), pp. 105-113, (2011). [ Links ]

[7] A. Lourdusamy, M. Seenivasan, Sherry George and R. Revathy, Super Vertex-Mean Graphs, Sciencia Acta Xaveriana, 5 (2), pp. 39-46, (2014). [ Links ]

[8] R. Ponraj. Studies in Labelings of Graphs, Ph.D.thesis, Manonmaniam Sundaranar University, India, (2004). [ Links ]

[9] R. Ponraj and D. Ramya, On Super Mean Graphs of Order 5, Bulletin of Pure and Applied Sciences 25 (1), pp. 143-148, (2006). [ Links ]

[10] D. Ramya, R. Ponraj, and P. Jeyanthi, Super Mean Labeling of Graphs, Ars Combin., 112, pp. 65-72, (2013). [ Links ]

[11] A. Rosa, On Certain Valuations of the Vertices of a Graph, in: Theory of Graphs (International Symposium, Rome, July 1966; Gordon and Breach, N.Y. and Dunod Paris, pp. 349-355, (1967). [ Links ]

[12] M. Seenivasan, Studies in Graph Theory; Some New Labeling Concepts, Ph. D. thesis, Manonmaniam Sundaranar University, India, (2013). [ Links ]

[13] S. Somasundaram and R. Ponraj, Super Mean Labeling of Graphs, National Academy, Science Letters, 26, pp. 210-213, (2003). [ Links ]

[14] R. Vasuki and A. Nagrajan, Some Results on Super Mean Labeling of Graphs, International Journal of Mathematical Combinatorics, 3, pp. 82-96, (2009). [ Links ]

[15] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, Private Limited, New Delhi, (1996). [ Links ]

Received: April 2016; Accepted: November 2017

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License