SciELO - Scientific Electronic Library Online

vol.35 issue4Some results on skolem odd difference mean labelingSum divisor cordial labeling for star and ladder related graphs author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.4 Antofagasta Dec. 2016 

On a sequence of functions Vn (α,β,δ) (x;a, k, s)


Naresh K. Ajudia

Charotar University of Science Technology

Jyotindra C. Prajapati

Marwadi University



In this paper, authors established various properties of a sequence offunctions {V(α,β,γ)(x;a,k,s)/n = 0,1,2,...} such as generating relations, bilateral generating relations, finite summation formulae, generating functions involving Stirling number, explicit representation and integral transforms.

Keyword : Sequence offunctions, operational techniques, generating functions, finite summationformulae, Srivastava’s theorem, Singhal-Srivastava generating function and Srivastava-Lavoie theorem.

AMS [2000] : Subject classification: 33E12, 33E99, 44A45.


[1]    Buchholz, H., The Confluent Hypergeometric Function, Springer-Verlag, New York, (1969).         [ Links ]

[2]    Hubble, J. H. and Srivastava, H. M., Certain Theorem on Bilateral Generating Functions Involving Hermite, Laguerre and Gegenbauer Polynomials, Journal of Math. Anal. and Appl., 152, pp. 343-353, (1990).         [ Links ]

[3]    McBride, E. B., Obtaining Generating Functions, Springer Verlag, Berlin, (1971).         [ Links ]

[4]    Prajapati, J.C. and Ajudia, N.K., On New Sequence of Functions and Their MATLAB Computation, International J. of Phy.,Chem. and Math. Sci., 1(2), pp.24-34(2012).         [ Links ]

[5]    Riordan, J., CombinatorialIdentities, John Wiley&Sons, Inc., U.S.A., (1968).         [ Links ]

[6]    Shukla, A. K. and Prajapati, J. C., Some Properties of a Class of Polynomials Suggested by Mittal, Proyecciones Journal of Mathemat-ics, 26(2), pp. 145-156, (2007).         [ Links ]

[7]    Singhal, J. P. and Srivastava, H. M., A Class of Bilateral Generating Functions for Certain Classical Polynomials. Pacific J. Math., 42, pp. 755-762, (1972).         [ Links ]

[8]    Srivastava, H. M., Some Generalizations of Carlitz’s Theorem. Pacific J. ofMath., 85(2), pp. 471-477, (1979).

[9]    Srivastava, H. M., Some Bilateral Generating Functions for a Certain Class of Special Functions-I and II, Proc. Indag. Math., 83(2), pp. 221-246, (1980).         [ Links ]

[10]    Srivastava, H. M., Some Families of Generating Functions Associated with the Stirling Numbers of the Second Kind, Journal of Math. Anal. and Appl., 251, pp. 752-769, (2000).         [ Links ]

[11]    Srivastava, H. M. and Lavoie, J.-L., A Certain Method of Obtaining Bilateral Generating Functions, Indag. Math., 78(4), pp. 304-320, (1975).         [ Links ]

[12]    Srivastava, H. M. and Manocha, H. L., A Treatise on GeneratingFunc-tions, Ellis Harwood Limited- John Wiley and Sons, New York, (1984).         [ Links ]

Naresh K Ajudia

Department of Mathematics,

H & H B Kotak Institute of Science, Saurashtra University,

Rajkot - 360 001, Gujarat,


e-mail :

Jyotindra C Prajapati

Department of Mathematics, Marwadi University,

Rajkot-Morbi Highway,

Rajkot - 360 003, Gujarat,


e-mail :

Received : March 2016. Accepted : September 2016

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License