SciELO - Scientific Electronic Library Online

vol.35 issue3Stability and boundedness in differential systems of third order with variable delay author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.3 Antofagasta Sept. 2016 


Gliding Hump Properties in Abstract Duality Pairs with Projections


Charles Swartz

New Mexico State University, U.S.A.


Let E, G be Hausdorff topological vector spaces and let F be a vector space. Assume there is a bilinear operator <.,.> : E X F →G such that <.,y> : E →G is continuous for every y £ F. The triple E, F, G is called an abstract duality pair with respect to G or an abstract triple and is denoted by (E,F : G). If {Pj} is a sequence of continuous projections on E, then (E,F : G) is called an abstract triple with projections. Under appropriate gliding hump assumptions, a uniform bounded principle is established for bounded subsets ofE and pointwise bounded subsets of F. Under additional gliding hump assumptions, uniform convergent results are established for series ∑ j=1 < Pjx,y> when x varies over certain subsets of E and y varies over certain subsets of F. These results are used to establish uniform countable additivity results for bounded sets of indefinite vector valued integrals and bounded subsets of vector valued measures.


[1]    R. Bartle, A general bilinear vector integral, Studia Math., 15, pp. 337-352, (1956).         [ Links ]

[2]    C. Bosch and C. Swartz, Functional Calculi, World Sci. Publ., Singa-pore, (2013).         [ Links ]

[3]    C. Cho, R. Li and C. Swartz, Subseries convergence in abstract duality pairs, Proy. J. Math., 33, pp. 447-470, (2014).         [ Links ]

[4]    J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc. Surveys #15, Providence, (1977).         [ Links ]

[5]    L. Drewnowski, M. Florencio and P. Paul, The Space of Pettis Integrable Functions is Barrelled, Proc, Amer. Math. Soc., 114, pp. 687694, (1992).         [ Links ]

[6]    N. Dunford and J. Schwartz, Linear Operators I, Interscience, N. Y., (1958).         [ Links ]

[7]    P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, N. Y., (1981).         [ Links ]

[8]    I. Kluvanek and G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, (1976).         [ Links ]

[9]    Lee Peng Yee, Sequence Spaces and the Gliding Hump Property, Southeast Asia Bull. Math., Special Issue, pp. 65-72, (1993).

[10]    Li Ronglu and C. Swartz, Spaces for Which the Uniform Boundedness Principle Holds, Studia Sci. Math. Hung., 27, pp. 379-384, (1992).         [ Links ]

[11]    K.Musial, Topics in the Theorey of Pettis Integration, Rend. Instituto Mat. Univ. Trieste, Vol. XXIII, (1991).         [ Links ]

[12]    D. Noll and W. Stadler, Abstract sliding hump techniques and characterizations ofbarrelled spaces, Studia Math., 94, pp. 103-120, (1989).         [ Links ]

[13]    T. V. Panchapagesan, The Bartle-Dunford-Schwartz Integral, Birkhauser, Basel, (2008).         [ Links ]

[14]    C. Stuart, Weak Sequential Completeness of fi-duals in Sequence Spaces, Rocky Mount. Math. J., 26, pp. 1559-1568, (1996).         [ Links ]

[15]    C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).         [ Links ]

[16]    C. Swartz, Multiplier Convergent Series. World. Sci. Publ., Singapore, (2009).         [ Links ]

[17]    C. Swartz, Measure, Integration and Function Spaces, World Sci. Publ., Singapore, (1994).         [ Links ]

[18]    A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).         [ Links ]

[19]    Junde Wu, Jianwen Luo and Chengri Cui, The Abstract Gliding Hump Properties and Applications, Taiwan. J. Math., 10, pp. 639649, (2006).

[20]    Zheng Fu, Cui Chengri and Li Ronglu, Abstract Gliding Hump Properties in the Vector-Valued Dual Pair, Acta Anal. Funct. Appl., 12, pp. 322-327, (2010).         [ Links ]

Received : April 2016. Accepted : August 2016


Charles Swartz
Mathematics Department
New Mexico State University
 Las Cruces, NM 88003,

U. S. A.
e-mail :

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License