SciELO - Scientific Electronic Library Online

 
vol.35 número2On Jensen’s and the quadratic functional equations with involutions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.2 Antofagasta jun. 2016

http://dx.doi.org/10.4067/S0716-09172016000200007 

Proyecciones Journal of Mathematics Vol. 35, No 2, pp. 225-233, June 2016. Universidad Católica del Norte Antofagasta - Chile

Approximate Drygas mappings on a set of measure zero

Muaadh Almahalebi

Ibn Tofail University

Morocco 


ABSTRACT

Let R be the set of real numbers, Y be a Banach space and f : R →Y. We prove the Hyers-Ulam stability for the Drygas functional equation

f (x + y) + f (x - y) = 2f (x) + f (y) + f (-y) for all (x, y) ∈ Ω, where Ω⊂ R2 is of Lebesgue measure 0.

Keywords: Drygas functional equation; stability; Baire category the-orem; First category; Lebesgue measure.

2000 Mathematics Subject Classification: 39B82.


REFERENCES

[1]    C. Alsina, J. L. Garcia-Roig, On a conditional Cauchy equation on rhombuses, in: J.M. Rassias (Ed.), Functional Analysis, Approxima-tion Theory and Numerical Analysis, World Scientific, (1994).

[2]    A. Bahyrycz, J. Brzdek,On solutions of the d’Alembert equation on a restricted domain, Aequationes Math. 85, pp. 169-183, (2013).

[3]    B. Batko, Stability of an alternative functional equation, J. Math. Anal. Appl. 339, pp. 303-311, (2008).

[4]    B.Batko, On approximation of approximate solutions of Dhombres equation, J. Math. Anal. Appl. 340, pp. 424-432, (2008).

[5]    J. Brzdek, On the quotient stability of a family of functional equations, Nonlinear Anal. 71, pp. 4396-4404, (2009).

[6]    J. Brzdek, On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, Aust. J. Math. Anal. Appl. 6, pp. 1-10, (2009).

[7]    J. Brzdek, J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Anal. 72, 2929-2934, (2010).

[8]    J. Chung, Stability of functional equations on restricted domains in a group and their asymptotic behaviors, Comput. Math. Appl. 60, pp. 2653-2665, (2010).

[9] J. Chung, Stability of a conditional Cauchy equation on a set of measure zero, Aequationes Math. (2013), http://dx.doi.org/ 10.1007/s00010-013-0235-5.

[10]    J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero, J. Math. Anal. Appl. (in press).

[11]    S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor, Florida, (2003).

[12]    H. Drygas, Quasi-inner products and their applications, In: A. K. Gupta (ed.), Advances in Multivariate Statistical Analysis, 13-30, Rei-del Publ. Co., (1987).

[13]    B. R. Ebanks, PL. Kannappan and P. K. Sahoo, A common general-ization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35, pp. 321-327, (1992).

[14]    M. Fochi, An alternative functional equation on restricted domain, Aequationes Math. 70, pp. 201-212, (2005).

[15]    G. L. Forti, J. Sikorska, Variations on the Drygas equations and its stability, Nonlinear Analysis, 74, pp. 343-350, (2011).

[16]    R. Ger, J. Sikorska, On the Cauchy equation on spheres, Ann. Math. Sil., 11, pp. 89-99, (1997).

[17]    S. -M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222, pp. 126137, (1998).

[18]    S.-M. Jung, P. K. Sahoo, Stability of functional equation of Drygas, Aequationes Math. 64, pp. 263-273, (2002).

[19]    S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, (2011).

[20]    M. Kuczma, Functional equations on restricted domains, Aequationes Math. 18, pp. 1-34, (1978).

[21]    Y.-H. Lee, Hyers-Ulam-Rassias stability of a quadratic-additive type functional equation on a restricted domain, Int. Journal of Math. Analysis, Vol. 7, no. 55, pp. 2745-2752, (2013).

[22] J. C. Oxtoby, Measure and Category, Springer, New York, (1980).

[23] J. M. Rassias, On the Ulam stability of mixed type mappings on re-stricted domains, J. Math. Anal. Appl. 281, pp. 747-762, (2002).

[24]    J. M. Rassias, M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281, pp. 516-524, (2003).

[25]    J. Sikorska, On two conditional Pexider functional equations and their stabilities, Nonlinear Anal. 70, pp. 2673-2684, (2009).

[26]    J. Sikorska, On a direct method for proving the Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 372, pp. 99-109, (2010).

[27]    D. Yang, Remarks on the stability of Drygas equation and the Pexider-quadratic equation, Aequationes Math. 68, pp. 108-116, (2004).

Muaadh Almahalebi

Department of Mathematics, Faculty of Sciences,

Ibn Tofail University,

BP : 14000, Kenitra Morocco

e-mail : muaadh1979@hotmail.fr

Received : October 2015. Accepted : April 2016

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons