SciELO - Scientific Electronic Library Online

 
vol.35 número1Coupled lower and upper solution approach for the existence of Solutions of nonlinear coupled system with nonlinear coupled boundary conditions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.1 Antofagasta mar. 2016

http://dx.doi.org/10.4067/S0716-09172016000100008 

Proyecciones Journal of Mathematics Vol. 35, No 1, pp. 119-136, March 2016. Universidad Católica del Norte Antofagasta - Chile

Sum divisor cordial graphs

A. Lourdusamy

F. Patrick 

St. Xavier’s College

India 


ABSTRACT

A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2 + mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3* K1,n and square graph of Bn,n are sum divisor cordial graphs.

Subjclass : 05C78.

Keywords : Sum divisor cordial, divisor cordial.


REFERENCES

[1]    J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin., 17 (2015) #DS6.         [ Links ]

[2]    F. Harary, Graph Theory, Addison-wesley, Reading, Mass (1972).         [ Links ]

[3]    P. Lawrence Rozario Raj and R. Lawence Joseph Manoharan, Some Result on Divisor Cordial Labeling of Graphs, Int. J. Innocative Sci., 1 (10), pp. 226-231, (2014).         [ Links ]

[4]    P. Maya and T. Nicholas, Some New Families of Divisor Cordial Graph, Annals Pure Appl. Math., 5 (2), pp. 125-134, (2014).         [ Links ]

[5]    A. Nellai Murugan and G. Devakiruba, Cycle Related Divisor Cordial Graphs, Int. J. Math. Trends and Tech., 12 (1), pp. 34-43, (2014).         [ Links ]

[6]    A. Nellai Murugan, G. Devakiruba and S. Navanaeethakrishan, Star Attached Divisor Cordial Graphs, Int. J. Inno. Sci. Engineering and Tech., 1 (5), pp. 165-171, (2014).         [ Links ]

[7]    S. K. Vaidya and N. H. Shah, Some Star and Bistar Related Cordial Graphs, Annals Pure Appl. Math., 3 (1), pp. 67-77, (2013).         [ Links ]

[8]    S. K. Vaidya and N. H. Shah, Further Results on Divisor Cordial Labeling, Annals Pure Appl. Math., 4 (2), pp. 150-159, (2013).         [ Links ]

[9]    R. Varatharajan, S. Navanaeethakrishan and K. Nagarajan, Divisor Cordial Graphs, Int. J. Math. Combin., 4, pp. 15-25, (2011).         [ Links ]

A. Lourdusamy

Department of Mathematics,

St. Xavier’s College, Palayamkottai-627002,

Tamilnadu,

India

e-mail : lourdusamy15@gmail.com

F. Patrick

Department of Mathematics,

St. Xavier’s College, Palayamkottai-627002,

Tamilnadu,

India

e-mail : patrick881990@gmail.com

Received : December 2015. Accepted : March 2016

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons