Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Proyecciones (Antofagasta)
Print version ISSN 0716-0917
Proyecciones (Antofagasta) vol.35 no.1 Antofagasta Mar. 2016
http://dx.doi.org/10.4067/S0716-09172016000100006
Proyecciones Journal of Mathematics Vol. 35, No 1, pp. 85-98, March 2016. Universidad Católica del Norte Antofagasta - Chile
Odd harmonious labeling of some cycle related graphs
P. Jeyanthi
Govindammal Aditanar College for Women
S. Philo
PSN College of Engineering and Technology
India
ABSTRACT
A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q 1} such that the induced function f * : E(G) → {1, 3, ... 2q 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.
Keywords : Harmonious labeling; odd harmonious labeling; odd harmonious graph; strongly odd harmonious labeling; strongly odd harmonious graph.
AMS Subject Classification (2010) : 05C78.
REFERENCES
[1] M. E. Abdel-Aal, Odd Harmonious Labelings of Cyclic Snakes, International Journal on applications of Graph Theory in Wireless Adhoc networks and Sensor Networks, 5 (3), pp. 1-13, (2013).
[2] M. E. Abdel-Aal, New Families of Odd Harmonious Graphs, International Journal of Soft Computing, Mathematics and Control, 3 (1), pp. 1-13, (2014).
[3] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, (2015) #DS6.
[4] R. L. Graham and N. J. A Sloane, On Additive bases and Harmonious Graphs, SIAM J. Algebr. Disc. Meth., 4, pp. 382-404, (1980).
[5] A. Gusti Saputri, K. A. Sugeng and D. Froncek, The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs, AKCE Int. J. Graphs Comb., 10 (2), pp. 221-228, (2013).
[6] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, (1972).
[7] Z. Liang, Z. Bai, On the Odd Harmonious Graphs with Applications, J. Appl. Math. Comput., 29, pp. 105-116, (2009).
[8] P. Jeyanthi , S. Philo and Kiki A. Sugeng, Odd harmonious labeling of some new families of graphs, SUT Journal of Mathematics., Vol. 51, No 2, pp. 53-65, (2015).
[9] P. Selvaraju, P. Balaganesan and J.Renuka, Odd Harmonious Labeling of Some Path Related Graphs, International J. of Math. Sci. & Engg.Appls., 7 (III), pp. 163-170, (2013).
[10] S. K. Vaidya and N. H. Shah, Some New Odd Harmonious Graphs, International Journal of Mathematics and Soft Computing, 1, pp. 9-16, (2011).
[11] S. K. Vaidya, N. H. Shah, Odd Harmonious Labeling of Some Graphs, International J. Math. Combin., 3, pp. 105-112, (2012).
P. Jeyanthi
Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamil Nadu,
India
e-mail: jeyajeyanthi@rediffmail.com
S. Philo
Department of Mathematics,
PSN College of Engineering and Technology, Melathediyoor,
Tirunelveli, Tamil Nadu,
India
e-mail: lavernejudia@gmail.com
Received : May 2015. Accepted : December 2015