Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Proyecciones (Antofagasta)
Print version ISSN 0716-0917
Proyecciones (Antofagasta) vol.35 no.1 Antofagasta Mar. 2016
http://dx.doi.org/10.4067/S0716-09172016000100003
Proyecciones Journal of Mathematics Vol. 35, No 1, pp. 33-44, March 2016. Universidad Católica del Norte Antofagasta - Chile
Equi independent equitable dominating sets in graphs
S. K. Vaidya
Saurashtra University
N J Kothari
L. E. College
India
ABSTRACT
We introduce the concept of an equi independent equitable dominating set and define equi independent equitable domination number. We also investigate the graph families whose equi independent equitable domination number and equitable domination number are same.
Keywords : Equi independent equitable domination number, equitable domination number, domination number.
AMS subject classification number : 05C69; 05C38.
REFERENCES
[1] C. Berge, Theory of Graphs and its Applications, Methuen, London, (1962).
[2] E. J. Cockayne and S.T. Hedetniemi, Independence graphs, Congr. Numer., X, pp. 471-491, (1974).
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, pp. 247-261, (1977).
[4] W. Goddard and M. A. Henning, Independent domination in graphs: A survey and recent results, Discrete Mathematics, 313, pp. 839-854, (2013).
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, (1998).
[6] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, pp. 206-212, (1962).
[7] V.Swaminathan and K. Dharmalingam, Degree equitable domination on graphs, Kragujevac Journal of Mathematics, 35(1), pp. 191-197, (2011).
[8] S. K. Vaidya and N. J. Kothari, Some Results on Equi Independent Equitable Dominating Sets in Graphs, Journal of Scientific Research, 7(3), pp. 77-85, (2015).
[9] S. K. Vaidya and N. J. Kothari, On equi independent equitable domi-nating sets in graphs, International Journal of Mathematics and Soft Computing, 6 (1), pp. 133-142, (2016).
[10] S. K. Vaidya and N. J. Kothari, Equi independent equitable domination number of cycle and bistar related graphs, IOSR Journal of Mathematics, 11 (6), pp. 26-32, (2015).
[11] D. B.West, Introduction to graph theory, 2nd ed., Prentice-Hall, New Delhi, India, (2003).
S. K. Vaidya
Department of Mathematics
Saurashtra University
Rajkot - 360005
Gujarat
India
e-mail : samirkvaidya@yahoo.co.in
N. J. Kothari
L. E. College Sama Kathe
Morbi-363642
Gujarat
India
e-mail : nirang_kothari@yahoo.com
Received : March 2015. Accepted : December 2015