SciELO - Scientific Electronic Library Online

 
vol.35 issue1On the classification of hypersurfaces in Euclidean spaces satisfying LrHr+1 = AHr+1Equi independent equitable dominating sets in graphs author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.35 no.1 Antofagasta Mar. 2016

http://dx.doi.org/10.4067/S0716-09172016000100002 

Proyecciones Journal of Mathematics Vol. 35, No 1, pp. 11-31, March 2016. Universidad Católica del Norte Antofagasta - Chile

Similarity Solution of Spherical Shock Waves -Effect of Viscosity

Narsimhulu Dunna

Addepalli Ramu

Dipak Kumar Satpathi

BITS-Pilani

India 


ABSTRACT

In this paper we investigated self-similar Solutions for Magneto Hy-drodynamic shock waves for the equation of state of Mie-Gruneisen type. Solutions are obtained numerically and the effect of viscosity (K) and the non-idealness parameter (d) on the self-similar solutions are studied in detail. The findings confirmed that, the non-idealness parameter and the viscosity parameter have major effect on the shock strength and the flow variables. All discontinuities of the physical pa-rameters are removed by the viscosity and complete flow field depends upon the magnitude of the viscosity. The obtained results are in good agreement with the results obtained by some of the researchers. All the analysis is presented pictorially in this paper.

Keywords : Similarity solutions, Shock waves, Magnetogasdy-namics, Viscosity, Rankine-Hugoniot condition, Mie-Gruneisen type, Numerical solution.

Mathematics Subject Classification (MSC) : 76M55, 76L05, 76W05.


REFERENCES

[1]    G. Ali, J.K. Hunter, Wave interactions in magnetohydrodynamics, Wave Motion, 27, pp. 257-277, (1998).         [ Links ]

[2]    I. Ballai, E. Forgacs-Dajka, A. Marcu, Dispersive shock waves in the solar wind, Astronomische Nachrichten, 328 (8), pp. 734-737, (2007).         [ Links ]

[3]    J. Blazek, Computational Fluid Dynamics: Principles and Applica-tions, Elsevier, Amsterdam, (2001).         [ Links ]

[4]    E. J. Caramana, M. J. Shashkov, P. P. Whalen, Formulations of artificial viscosity for multi-dimensional shock wave computations, J. Com-put. Phys., 144 (1), pp. 70-97, (1998).         [ Links ]

[5]    A. V. Chikitkin, B. V. Rogov, G. A. Tirsky, S. V. Utyuzhnikov, Effect of bulk viscosity in supersonic flow past spacecraft, Applied Numerical Mathematics, doi: 10.1016/j.apnum.2014.01.004 (2014).

[6]    R.F. Chisnell, An analytic description of converging shock waves, J. Fluid. Mech., 354, pp. 357-375, (1998).         [ Links ]

[7]    V. Genot, Analytical solutions for anisotropic MHD shocks, Astro. Phys. Space Sci. Trans., 5, pp. 31-34, (2009).         [ Links ]

[8]    W. Gretler, R. Regenfelder, Similarity solution for laser-driven shock waves in a particle-laden gas, Fluid Dynamics Research, 28 (5), pp. 369-382, (2001).         [ Links ]

[9] P. Hafner, Strong convergent shock waves near the center of conver-gence: A power series solution, SIAM J. Appl. Math., 48 (6), pp. 1244-1261, (1998).         [ Links ]

[10]    P. M. Jordan, M. R. Meyer, A. Puri, Causal implications of viscous damping in compressible fluid flows, Phys. Rev., E. 62, pp. 7918- 7926, (2000).         [ Links ]

[11]    V. Khodadad, N. Khazraiyan, Numerical modeling of ballistic pen-etration of long rods into ceramic/metal armors, 8th International LS-DYNA Users Conference-Drop/Impact Simulations, 14, pp. 39-50, (2004).         [ Links ]

[12]    V. P. Korobeinikov, Problems in the theory ofpoint explosion in gases, Providence, American Mathematical Society, Rhode Island (1976).         [ Links ]

[13]    N. P. Korzhov, V. V. Mishin, V.M. Tomozov, On the viscous interac-tion of solar wind streams, Soviet Astronomy, 29, pp. 215-218, (1985).         [ Links ]

[14]    L.D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon press, New York (1987).         [ Links ]

[15]    R. Lazarus, R. D. Richtmyer, Similarity solutions for converging shocks, Technical report LA- 6823-MS. Los Alamos Scientific Labo-ratory (1977).

[16]    W. H. Lee, P.P. Whalen, Calculation of shock problems by using four different schemes, International Conference on Numerical Methods for Transient and Coupled Problems. Venice, Italy (1984).         [ Links ]

[17]    A. A. Maslov, S. G.Mironov, A. N. Kudryavtsev, T. V. Poplavskaya,

I.S. Tsyryulnikov, Wave process in a viscous shock layer and control of fluctuations, J. Fluid Mech., 650, pp. 81-118, (2010).

[18]    J. A. Orta, M.A. Huerta, G. C. Boynton, Magnetohydrodynamic shock heating of the solar corona, The Astrophysical Journal., 596, pp. 646655, (2003).         [ Links ]

[19]    A. Ramu, M. P. Ranga Rao, Converging spherical and cylindrical shock waves, J. Eng. Math. 27 (4), pp. 411-417, (1993).         [ Links ]

[20]    A. Ramu, N. Dunna, D. K. Satpathi, Numerical study of shock waves in non-idea magnetogasdynamics, Journal of Egyptian Mathematical Society, 24 (1), pp. 116-124 (2016).         [ Links ]

[21]    L. Richard, Similarity Solutions for a spherical shock wave, J. Appl. Phys., 26 (8), pp. 954-960, (1955).         [ Links ]

[22]    V. D. Sharma, R. Arora, Similarity Solutions for strong shocks in an ideal gas, Stud. Appl. Math. 114 (4), pp. 375-394, (2005).         [ Links ]

[23]    K. P. Stanyukovich, Unsteady motion of Continuous Medi,. Pergamon Press, New York (1960).         [ Links ]

[24]    G. I. Taylor, The formation of a blast wave by a very intense explosion-I and II: The atomic explosion of 1945, Proc. Roy. Soc., London, 201 (1065), pp. 159-186, (1950).         [ Links ]

[25]    J. Von Neumann, R.D. Richtmyer, A method for the numerical calcu-lation of hydrodynamic shocks, J. Appl. Phys. , 21 (3), pp. 232-237, (1950).         [ Links ]

[26]    G. B.Whitham, Linear and Non-linear Waves. John Wiley & Sons, New York, (1974).         [ Links ]

[27]    Ya. B.Zeldovich, Y.P. Raizer, Physics of Shock waves and High-Temperature Hydrodynamic Phenomenon. Vol. II., Academic Press, New York, (1966).         [ Links ]

[28]    K. Zumbrun, The refined inviscid stability condition and cellular insta-bility of viscous shock waves, Physica D: Nonlinear Phenomena., 239(13), pp. 1180-1187, (2010).         [ Links ]

Narsimhulu Dunna

Department of Mathematics

Birla Institute of Technology and Science - Pilani, Hyderabad - Campus Jawahar Nagar Shameerpet,

INDIA

e-mail : narsimha.maths@gmail.com

Addepalli Ramu

Department of Mathematics

Birla Institute of Technology and Science - Pilani, Hyderabad - Campus Jawahar Nagar Shameerpet,

INDIA

e-mail : aramu@hyderabad.bits-pilani.ac.in

Dipak Kumar Satpathi

Department of Mathematics

Birla Institute of Technology and Science - Pilani, Hyderabad - Campus Jawahar Nagar Shameerpet,

INDIA

e-mail : dipak@hyderabad.bits-pilani.ac.in

Received : March 2015. Accepted : March 2016

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License