SciELO - Scientific Electronic Library Online

 
vol.34 issue4The multi-step homotopy analysis method for solving fractional-order model for HIV infection of CD4+T cellsComment on "Edge Geodetic Covers in Graphs author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.4 Antofagasta Dec. 2015

http://dx.doi.org/10.4067/S0716-09172015000400002 

Proyecciones Journal of Mathematics Vol. 34, No 4, pp. 323-341, December 2015. Universidad Católica del Norte Antofagasta - Chile

Inequalities of Hermite-Hadamard Type for h-Convex Functions on Linear Spaces

S. S. Dragomir

University of the Witwatersrand

South Africa 


ABSTRACT

Some inequalities of Hermite-Hadamard type for h-convex functions defined on convex subsets in real or complex linear spaces are given. Applications for norm inequalities are provided as well.

Subjclass : 26D15; 25D10.

Keywords : Convex functions, Integral inequalities, h-Convex functions.


REFERENCES

[1]    M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2, No. 13-16, pp. 639-646, (2008).

[2]    M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3, No. 37-40, pp. 1965-1975, (2008).

[3]    G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135, No. 3, pp. 175-189, (2002).

[4]    N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro,and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].

[5]    E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54, pp. 439-460, (1948).

[6]    M. Bombardelli and S. Varosanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities. Comput. Math. Appl. 58, No. 9, pp. 1869-1877, (2009).

[7]    W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37), pp. 13-20, (1978).

[8]    W. W. Breckner and G. Orban, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, (1978). viii+92.

[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.

[10]    P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, pp. 53-62, (2002).

[11]    P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2), pp. 697-712, (1999).

[12]    G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8, pp. 3-11, (2010).

[13]    S. S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. KSIAM, 3(1), pp. 127-135, (1999).

[14]    S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38, pp. 33-37, (1999).

[15]    S. S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7, pp. 477-485, (2000).

[16]    S. S. Dragomir, On the Ostrowski’s inequality for mappings of bounded variation and applications, Math. Ineq. & Appl., 4 (1), pp. 33-40, (2001).

[17]    S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes

integral    f (t)    du (t) where f is of Holder type and u is of bounded

variation and applications, J. KSIAM, 5 (1), pp. 35-45, (2001).

[18]    S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math., 3(5) (2002), Art. 68.

[19]    S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.

[20]    S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.

[21]    S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.

[22]    S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16 (2), pp. 373-382, (2003).

[23]    S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, (2012). x+112 pp. ISBN: 978-1-4614-1778-1.

[24]    S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Holder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42 (90) (4), pp. 301-314, (1999).

[25]    S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32, No. 4, pp. 687-696, (1999).

[26]    S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33, No. 1, pp. 43-49, (2000).

[27]    S. S. Dragomir and B. Mond, On Hadamard’s inequality for a class of functions of Godunova and Levin. Indian J. Math. 39, No. 1, pp. 1-9,

(1997) .

[28]    S. S. Dragomir and C. E. M. Pearce, On Jensen’s inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33, No. 2, pp. 93-100, (1996).

[29]    S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57, pp. 377-385,

(1998) .

[30]    S. S. Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21, No. 3, pp. 335-341, (1995).

[31]    S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, (2002).

[32]    S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in Li -norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28, pp. 239-244, (1997).

[33]    S. S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 , pp. 105-109, (1998).

[34]    S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in Lp-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40 (3), pp. 245-304, (1998).

[35]    A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq. 4, No. 3, pp. 365-369, (2010).

[36]    E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), pp. 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, (1985).

[37]    H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48, No. 1, 100-111, (1994).

[38]    E. Kikianty and S. S. Dragomir, Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press)

[39]    U. S. Kirmaci, M. Klaricic Bakula, M. E Ozdemir and J. Pecaric, Hadamard-type inequalities for s-convex functions. Appl. Math. Com-put. 193, No. 1, pp. 26-35, (2007).

[40]    M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4, No. 29-32, pp. 1473-1482, (2010).

[41]    G. Maksa and Z. Pales, The equality case in some recent convexity inequalities, Opuscula Math. 31, 2, pp. 269-277, (2011).

[42]    D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity, Aequationes Math. 28, pp. 229-232, (1985).

[43] D. S. Mitrinovic and J. E. Pecaric, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12, No. 1, pp. 33-36, (1990).

[44]    C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240, No. 1, pp. 92-104, (1999).

[45]    J. E. Pecaric and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminaron Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babes-Bolyai, Cluj-Napoca, (1989).

[46]    J. Pecaric and S. S. Dragomir, A generalization of Hadamard’s inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7, pp. 103-107, (1991).

[47]    M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12, No. 4, pp. 853-862, (2009).

[48]    M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2, No. 3, pp. 335-341, (2008).

[49]    E. Set, M. E. Ozdemir and M. Z. Sarikaya, New inequalities of Os-trowski’s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27, No. 1, pp. 67-82, (2012).

[50]    M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79, pp. 265-272, No. 2, (2010).

[51]    M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl., 2013, 2013:326.

[52]    S. Varosanec, On h-convexity. J. Math. Anal. Appl. 326, No. 1, pp. 303-311, (2007).

S. S. Dragomir

Mathematics,

College of Engineering & Science Victoria University,

P. O. Box 14428 Melbourne City,

MC 8001,

Australia

e-mail : sever.dragomir@vu.edu.au

Received : March 2015. Accepted : September 2015

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License