SciELO - Scientific Electronic Library Online

 
vol.34 issue2The largest Laplacian and adjacency indices of complete caterpillars of fixed diameter author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.2 Antofagasta June 2015

http://dx.doi.org/10.4067/S0716-09172015000200007 

Strongly(Vλ, A, Δn(vm),p, q)-summable sequence spaces defined by modulus function and statistical convergence

Mohammad Aiyub

University of Bahrain

Kingdom of Bahrain 


ABSTRACT

In this paper we introduce strongly (Vλ,A, Δnvm,p, q)-summable sequences and give the relation between the spaces of strongly (Vλ,A, Δnvm,p, q)-summable sequences and strongly (Vλ,A, Δnvm,p, q)-summable sequences with respect to a modulus function when A =(aik) is an infinite matrix of complex number, (Δnvm) is generalized difference operator, p = (pi) is a sequence of positive real numbers and q is a seminorm. Also we give the relationship between strongly (Vλ,A, Δnvm,p, q) - convergence with respect to a modulus function and strongly Sλ(A, Δn(vm))- statistical convergence.

AMS Subject Classification (2000) : 40A05, 46A45.

Keywords and Phrases : De la Vallee-Poussin mean, Difference operator, modulus function, statistical convergence.


REFERENCES

[1]    M. Aiyub, Strongly almost summable difference sequences and statistical convergence., Advances in Mathematics: Scientific Journal 2 (1), pp. 1-8, (2013).         [ Links ]

[2]    T. Bilgin, Some sequence spaces defined by modulus., Int. Math. J., 3(3), pp. 305-310, (2003).         [ Links ]

[3]    J. S. Connor, The statistical and strong p — Ceseio convergence of sequence., Analysis 8 (1998), pp. 47-63, (1998).         [ Links ]

[4]    H. Dutta, Characterization of certain matrix classes involving generalized difference summability spaces., Appl. Sci. Apps 11, pp. 60-67, (2009).         [ Links ]

[5]    M. Et and R. Colak, On generalized difference sequence spaces., Soo-chow J. Math 21 (4), pp. 147-169, (1985).         [ Links ]

[6]    H. Fast, Sur la convergence statistique., Colloq. Math. 2, pp. 241-244, (1951).         [ Links ]

[7]    A. R. Freedman and J. J. Sember, Density and summability., Pacific. J. Math., 95, pp. 293-305, (1981).         [ Links ]

[8]    M. Gungor, M. Et and Y. Altin, Strongly (va, A , q)-summable sequences defined by Orlicz functions., Appl.Math. Comput., 157, pp. 561-571, (2004).         [ Links ]

[9]    H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, pp. 169-176, (1981).         [ Links ]

[10]    E. Kolk, On strong boundedness and summability with respect to a sequence moduli., Tartu Ul Toimetised 960, (1983).         [ Links ]

[11]    L. Lindler, Uber de la Valle-pousinche Summierbarkeit Allgemeiner Orthogonalreihen., Acta Math. Acad. Sci. Hungar. 16, pp. 375-387, (1995).         [ Links ]

[12]    I. J. Maddox, Sequence spaces defined by a modulus., Mat. Proc. Camb. Phil. Soc. 100, pp. 161-166, (1986).         [ Links ]

[13]    I. J. Maddox,Inclusion between FK space and Kuttner’s theorem., Math. Proc. Cambridge. Philos. Soc. 101, pp. 523-527, (1987).

[14]    S. Mohiuddin and M. Aiyub, Lacunary statistical convergence in random2-normed spaces., Appl. Math. Inf. Sci. 6(3), pp. 581-585, (2012).         [ Links ]

[15]    H. Nakano, Concave modulars, J. Math. Soc. Japan, 5, pp. 29-49, (1953).         [ Links ]

[16]    E.Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus., Indian J. Pure and App. Math. 25, pp. 621-625, (1994).         [ Links ]

[17]    W. H. Ruckle, FK spaces in which the sequence of coordinate vector is bounded., Canad. J. Math. 25, pp. 973-978, (1973).         [ Links ]

[18]    D.Rath and B.C. Tripathy,Matrix maps on sequence spaces associated with sets of intergers., Indian journal of pure Apll. Math. 27 (2), pp. 197-206, (1996).         [ Links ]

[19]    T.Salat, On Statistically convergent sequence of real numbers., Math. Slovaca 30, pp. 139-150, (1980).         [ Links ]

[20]    E. Savas, Some sequence spaces and statistical convergence., Int.J. Math. and Math. Sci., 29 (5), pp. 303-306, (2002).         [ Links ]

[21]    I. J. Schoenberg, The integrability of certain functions and related summability methods., Amer. Math. Monthly, 66, pp. 261-375, (1959).         [ Links ]

[22]    B. C. Tripathy, Matrix transforations between some classes of sequences, Journal of Mathematical Analysis and appl. 206, pp. 448-450, (1997).         [ Links ]

[23]    B. C. Tripathy and A. Esi, A new type of difference sequence spaces., Int. J. Sci. Technol. 1 (1), pp. 11-14, (2006).         [ Links ]

[24]    B. C. Tripathy ,A. Esi and B. K. Tripathy,On a new type of generalized difference cesaro sequence spaces., Soochow J. Math 31 (3), pp. 333340, (2005).         [ Links ]

[25]    B. C. Tripathy and M. Sen, On generalized statitically convergent sequences, Indian journal of pure and App. Maths. 32 (11), pp. 16891694, (2001).         [ Links ]

[26] B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Jour. Math, 37 (2), pp. 155-162, (2006).         [ Links ]

M. Aiyub

Department of Mathematics, University of Bahrain,

P. O. Box-32038,

Kingdom of Bahrain

e-mail: maiyub2002@yahoo.com

Received : January 2015. Accepted : April 2015

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License