SciELO - Scientific Electronic Library Online

vol.34 issue2A note on complementary tree domination number of a treeOn the stability and boundedness of certain third order non-autonomous differential equations of retarded type author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.34 no.2 Antofagasta June 2015 

On some I -convergent generalized difference sequence spaces associated with multiplier sequence defined by a sequence of modulli

Shyamal Debnath

Subrata Saha

Tripura University



In this article we introduce the sequence spaces cI (F, Λ, Δm,p), coI (F, Λ, Δm,p) and ℓ I (F, Λ, Δm,p), associated with the multiplier sequence Λ = (λk), defined by a sequence of modulli F = (fk). We study some basic topological and algebraic properties of these spaces. Also some inclusion relations are studied.

Key words : Ideal, I - convergence, modulus function, difference sequence.

AMS(2010) Classification No : 46A45, 40A05.


[1]    A. Esi and M. Et. : Some new spaces defined by Orlicz functions; Indian J. Pure and Appl. Math., 31 (8), pp. 967-972, (2000).

[2]    B. C. Tripathy, A. Baruah, M. Et and M. Gungor: On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iranian J. Sci. and Techno., Transactions A: Science, 36 (2), pp. 147-155, (2012).

[3]    B. C. Tripathy and A. J. Dutta : On I -acceleration convergence of sequences of fuzzy real numbers; Math. Modell. Analysis, 17 (4), pp. 549-557, (2012).

[4]    B. C. Tripathy, B. Choudhury and B. Sarma : On some new type of generalized difference sequence spaces; Kyungpook Math. Jour., 48 (4), pp. 613-622, (2008).

[5]    B. C. Tripathy and B. Hazarika : Some I-convergent sequence spaces defined by Orlicz functions; Acta Math. Appl. Sin., 27 (1), pp. 149-154 (2011).

[6]    B. C.Tripathy and B.Hazarika :    Paranorm I-convergent sequence

spaces; Math. Slovaca, 59 (4), pp. 485-494, (2009).

[7]    B. C.Tripathy and B. Hazarika : I -convergent sequence spaces associated with multiplier sequence spaces; Math. Ineq. Appl.,11 (3), pp. 543-548, (2008).

[8] B. C. Tripathy and B. Hazarika : I -monotonic and I-convergent sequences; Kyungpook Math. J., 51 (2), pp. 233-239, (2011).

[9] B. C. Tripathy and B. Sarma : On I-convergent double sequences of fuzzy real numbers, Kyungpook Math. J.,52 (2), pp. 189-200, (2012).

[10]    B. C. Tripathy and H. Dutta: On some new paranormed difference sequence spaces defined by Orlicz functions; Kyungpook Math. J., 50 (1), pp. 59-69, (2010).

[11]    B. C. Tripathy, M. Sen and S. Nath: I -convergent in probabilistic n-normed space; Soft Comput., 16, pp. 1021-1027, (2012).

[12]    B. C.Tripathy and P.Chandra: On some generalized difference para-normed sequences spaces associated with multiplier sequence defined by modulus function; Anal. Theory and Appl, 27 (1), pp. 21-27, (2011).

[13]    B. C. Tripathy and S. Debnath: On generalized difference sequence spaces of fuzzy numbers, Acta Sinet. Tech., Maringa, 35 (1), pp. 117121, (2013).

[14]    B. C. Tripathy and S. Mahanta: On a class of vector valued sequences associated with multiplier sequences; Acta Math. Appl. Sinica, 20 (3), pp. 487-494, (2004).

[15]    B. C. Tripathy and S. Mahanta: On I -acceleration convergence of sequences; J. Frank. Inst., 347, pp. 591-598, (2010).

[16] B. Sarma: I-convergent sequences of fuzzy real numbers defined by Orlicz function; Mathematical Sciences, 6: 53, doi : 10.1186/2251-7456-6-53, (2012).

[17]    E. Savas and P. Das: A generalized statistical convergence via ideals; Appl. Math. Lett, 24, pp. 826-830, (2011).

[18]    G. Goes and S. Goes: Sequences of bounded variation and sequences of fourier coefficients; Math. Zeift., 118, pp. 93-102, (1970).

[19]    H. Kizmaz : On certain sequence spaces; Canad. Math. Bull., 24 (2), pp. 169-176, (1981).

[20]    H. Nakano : Concave Modulars; J.Math Soc. Japan, 5, pp. 29-49, (1953).

[21]    I. J. Schoenburg : The integrability of certain functions and related summability methods; Amer. Math. Month, 66, pp. 361-375, (1951).

[22]    J. Lindenstrauss and L. Tzafriri: On Orlicz sequence spaces; Israel J. Math, 101, pp. 379-390, (1971).

[23]    P. Kostyrko, T.Salat and W.Wilczynski: I -convergence; Real Anal. Exchange, 26 (2), pp. 669-686, (2000/2001).

[24]    R. C Buck: The measure theoretic approach to density; Amer. J. Math., 68, pp. 560-580, (1946).

[25]    S. Debnath and J.Debnath: Some ideal convergent sequence spaces of fuzzy real numbers; Palestine J. Math, 3 (1), pp. 27-32, (2014).

[26]    S. Debnath and J.Debnath: On I-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation; Proyecciones J. Math, 33 (3), pp. 277-285, (2014).

[27]    T. Salat: On statistically convergent sequences of real numbers; Math. Slovaka, 30, pp. 139-150, (1980).

[28]    V. A. Khan and K. Ebadullah : I -convergent difference sequence spaces defined by a sequence of modulli; J. Math. Comput. Sci. 2 (2), pp. 265-273, (2012).

Shyamal Debnath

Department of Mathematics,

Tripura University (A Central University)

Suryamaninagar, Agartala - 799022

West Tripura, India

e-mail :


Subrata Saha

Department of Mathematics,Tripura University,

Tripura University (A Central University)

Suryamaninagar, Agartala - 799022

West Tripura, India

e-mail :

Received : February 2014. Accepted : April 2015

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License