SciELO - Scientific Electronic Library Online

 
vol.33 número4On linear maps that preserve G-partial-isometries in Hilbert spaceDifference sequence spaces in cone metric space índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.33 no.4 Antofagasta dic. 2014

http://dx.doi.org/10.4067/S0716-09172014000400005 

Fróchet differentiation between Menger probabilistic normed spaces

N. Eghbali

University of Mohaghegh Ardabili

Iran


ABSTRACT

In this paper, we define and study Menger weakly and strongly P-convergent sequences and then Menger probabilistic continuity. We also display Frechet differentiation of nonlinear operators between Menger probabilistic normed spaces.

Subjclass : 46S40.

Keywords : Menger probabilistic normed spaces; Frehet differentiation; nonlinear operators.


REFERENCES

[1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math. 46, pp. 91—98, (1993).

[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Thejournal of Fuzzy Mathematics, 11, pp. 687—705, (2003).

[3] B. Buffoni and J. Toland, Analytic theory of global bifurcation, Princeton Oxford: Princeton University Press; (2003).

[4] S.S.Chang, Y. J.Cho andS.M. Kang, Probabilistic metric spaces and nonlinear operator theory, Sichuan University Press, Chengdu,(1994).

[5] M.S.ElNaschie, On the uncertainly of Cantorian geometry and two-slit experiment, Choas, Solitions and Fractals, 9, pp. 517—529, (1998).

[6] M.S. ElNaschie, On the unification of heterotic strings, M theory and å°° theory, Choas, Solitions and Fractals, 11, pp. 2397—2408, (2000).

[7] K. Mengar, Statistical metrics, Proc. Nat. Acad. Sci. 28, pp. 535—537,(1942).

[8] M. Mursaleen and Q. M. Danish Lohani, Statistical limit superior and limit inferior in probabilistic normed spaces,Filomat,25(3),pp.55-67, (2011).

[9] M. Mursaleen and S. A. Mohiuddine, On ideal convergence ofdouble sequences in probabilistic normed spaces, Math. Reports, 12 (64) (4),pp. 359-371, (2010).

[10] M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuituinistic fuzzy normed spaces and Frechet derivative, Chaos, solitions and Fractals, 42 (2), pp. 1010—1015, (2009).

[11] A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk. 149, pp. 280—283, (1963).

N. Eghbali

Department of Mathematics and Applications

Faculty of Mathematical Sciences

University of Mohaghegh Ardabili

56199-11367

Ardabil

Iran

e-mail : eghbali@uma.ac.ir

Received : May 2014. Accepted : August 2014

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons