SciELO - Scientific Electronic Library Online

 
vol.33 issue3On /-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformationGeneralized b-closed sets in ideal bitopological spaces author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.33 no.3 Antofagasta Sept. 2014

http://dx.doi.org/10.4067/S0716-09172014000300005 

Proyecciones Journal of Mathematics Vol. 33, No 3, pp. 287-313, September 2014. Universidad Católica del Norte Antofagasta - Chile

 

Classes de -hypomorphie infinies

 

Jean Guillaume Hagendorf

Université de Paris

France


ABSTRACT

Cet articlese veutune suite a [23] puisque apres l'etude des classes de (<3)-hypomorphie aiaquelleest consacree [23] nous allons etudier les classes d'hypomorphie infinies avec des conditions d'hypomorphie infinie. Nous y utiliserons aussi la notion de pavages mais ceux-ci seront différents de ceux de [23] car la problématique n'est plus la meme. Au passage nous decrirons les classes de (<3,4/2)-hypomorphie. Voir la bibliographie pour d'autres (etudes en rapport avec l'hypomorphie infinie ou finieouaveclaproblematique de la reconstruction qui y est liee.

Mots-clés : Relation,Binaire,Graphe, Reconstruction,Différence, Hypomorphie, Hemimorphie, Pavage, Interdit, Drapeau, Infini.

Classification AMS : 05C60.


REFERENCES

[1] Y. Boudabbous, La 5-reconstruction et lindecomposabilitedes relations binaires, European J. Combin. 23, pp. 507-522, (2002).

[2] Y. Boudabbous and C. Delhomme, Prechains and self duality, Discrete Math. 312, p. 1743-1765, (2012).

[3] Youssef Boudabbous and Christian Delhomme, (<k)-reconstuctibles binary relations, European Journal of Combinatorics 37, pp. 43-67, (2014).

[4] Y. Boudabbous, A. Boussa'iri, A. ChaichaaetN.ElAmri, Lestournois (<k)-demi-reconstructibles pour k<6, C. R. Acad. Sci. Paris, Serie I t. 346, pp. 919-924, (2008).

[5] Y. Boudabbous et G. Lopez, La relation difference et lanti-isomorphie. Math. Log. Quart. 41, (1995), pp. 268-280, (1995).

[6] Y. Boudabbous and G. Lopez, The minimal non-(<k)-reconstructible relations, Discrete Math. 291, pp. 19-40, (2005).

[7] Y. Boudabbous and H. Si Kaddour, {-1,2}-hypomorphy and hereditarily hypomorphy coincide for posets, Contributions to Discrete Math. 4, pp. 12-20 (2009).

[8] A. Boussa'iri : Decomposabilite, dualiteet groupes finis en theorie des relations, Thesededoctorat demathematiques. Soutenue alUniversite Claude Bernard, le 12 Juin 1995.

[9] A. Boussa'iri, P. Ille, G. Lopez, S. Thomasse, Hypomorphieetinversion locale entre graphes, C. R. Acad. Sci. Paris, Ser. I t. 317, pp. 125-128, (1993)  .

[10] J. Dammak. La dualite dans la demi-reconstruction des relations bi-naires finies.C.R.A. S,Serie 1 1. 327, pp. 861-864, (1998).

[11] Jamel Dammak, Le seuil de reconstructibilite par le haut modulo la dualite des relations binaires finies, Proyecciones Vol. 22, No 3, pp. 209-236, December 2003. Universidad Catolica del Norte Antofagasta - Chile

[12] J. Dammak, Caracterisation des relations binaires finies d-demi-reconstructibles, Proyecciones, Volume 22, No 1, pp. 31-61, (2003).

[13] R. Fraisse, Abritement entre relations et specialement entre Chaines, Symposia Math., Instituto Nazionale di Alta Matematica, 5, pp. 203251. 13, (1970).

[14] R. Fraisse, Theory of relations, Studies in Logic vol 145, North-Holland (2000).

[15] R. Fraisse et G. Lopez, La reconstruction dune relation dans lhy-pothùese forte : isomorphie des restrictions aù chaque partie stricte, Les Presses de lUniversitede Montreal, no 109, (1990).

[16] N. El Amri, La (<k)-demi-reconstructibilite des graphes pour 7<k<12, to appear in Ars Combinatoria.

[17] J.G. Hagendorf, Extensions respectueuses de chaínes, Z. Math. Logik Grundlag. Math., 25, pp. 423-444, (1979).

[18] J.G. Hagendorf, Extensions immediates de chaines, Z. Math. Logik Grundlag. Math., 28, pp. 15-44, (1982).

[19] J.G. Hagendorf, Reconstruction des ordres totaux, Z. Math. Logik Grundlag. Math., 34, pp. 193-200, (1988).

[20] J.G. Hagendorf, Restriction respectueuse et reconstruction des cha nes et des relations infinies. Z. Math. Logik Grundlag. Math., 38, pp. 457490, (1992).

[21] J.G. Hagendorf et G. Lopez, Un theorème de demi-reconstruction des relations binaires de cardinal >12, Prepublications dOrsay, pp. 1-300, (1994) ; (non publié ).

Classes de (< 3,ù,ù*,Ù, Ù*)-hypomorphie infinies 313

[22] J.G. Hagendorf et G. Lopez. La demi-reconstructibilitedes relations binaires dau moins 13 elements. C. R. Acad. Sci. Paris, t. 317, Serie I, pp. 7-12, (1993).

[23] J. Hagendorf, G. Lopez et C. Rauzy, Caracterisation des classes de (<3)-hypomorphie ùa laide dinterdits. Proyecciones Journal of Mathematics Vol. 32, No 2, pp. 91-105, June (2013). Universidad Catolica del Norte Antofagasta - Chile.

[24] J. G. Hagendorf, G. Lopez et C. Rauzy, Pavages dune relation binaire. C. R. Acad.Sci.Paris,t.321 Serie I, pp. 1281-1286, (1995).

[25] Lopez Gerard, Deux résultats concernant la determination dune relation par les types disomorphie de ses restrictions, C. R. Acad. Sci. Paris Ser. A 274, p1525-1528, (1972).

[26] Lopez Gerard, Sur la determination dune relation par les types di-somorphie de ses restrictions, C. R. Acad. Sci. Paris Ser. A 275, pp. 951-953, (1972).

[27] G. Lopez, Lindeformabilite des relations et multirelations binaires, Z. Math. Logik Grundlag. Math., 24, pp. 303-317, (1978).

[28] G. Lopez and C. Rauzy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n-1), I, Z. Math. Logik Grundlag. Math., 38, (1992), 27-37. et II, Z. Math. Logik Grundlag. Math., 38, pp. 157-168, (1992).

[29] K. B. Reid and C. Thomassen, Strongly self-complementary and hereditarily isomorphic tournaments, Monatshefte fur Mathematik 81, pp. 291-304 (1976).


Jean G. Hagendorf
14 allee de lOseraie
94260 Fresnes
France
e-mail : jean.hagendorf@sfr.fr

Received : December 2013. Accepted : June 2014