SciELO - Scientific Electronic Library Online

 
vol.33 issue3On (γ, δ) -Bitopological semi-closed set via topological idealOn /-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.33 no.3 Antofagasta Sept. 2014

http://dx.doi.org/10.4067/S0716-09172014000300003 

Proyecciones Journal of Mathematics Vol. 33, No 3, pp. 259-276, September 2014. Universidad Católica del Norte Antofagasta - Chile

 

On Zweier I-convergent sequence spaces

 

Vakeel A. Khan

Khalid Ebadullah

Yasmeen Aligarh

Muslim University, India


ABSTRACT

In this article we introduce the Zweier I-convergent sequence spaces . We prove the decomposition theorem and study topo-logical, algebraic properties and have established some inclusion relations of these spaces.

Keywords and phrases : Ideal, filter, I-convergence field, monotone, solid, Lipschitz function, Zweier Space, Statistical convergence, Banach space.

2000 Mathematics Subject Classification : 40C05, 40J05, 46A45.


REFERENCES

[1] Altay, B.,Ba§ar, F. and Mursaleen. On the Euler sequence space which include the spaces Zp and Z00, Inform.Sci., 176 (10), pp. 1450-1462, (2006).

[2] Basar, F. and Altay, B. On the spaces of sequences of p-bounded variation and related matrix mappings. Ukrainion Math. J. 55. (2003).

[3] Buck, R. C.: Generalized Asymptotic Density, Amer. J. Math. 75, pp. 335-346, (1953).

[4] Connor, J. S.: it The statistical and strong P-Cesaro convergence of sequences,Analysis. 8(1988),47-63.

[5] Connor, J. S. : On strong matrix summability with respect to a modulus and statistical convergence, Cnad. Math. Bull. 32, pp. 194-198, (1989).

[6] Connor, J., Fridy, J. A. and Kline, J. Statistically Pre-Cauchy sequence, Analysis. 14, pp. 311-317, (1994).

[7] Fast, H. : Sur la convergence statistique, Colloq. Math. 2, pp. 241-244, (1951).

[8] Kamthan, P. K. and Gupta, M. : Sequence spaces and series. Marcel Dekker Inc, New York.(1980).

[9] Khan, V. A. and Ebadullah, K. On some I-Convergent sequence spaces defined by a modullus function. Theory and Application of Mathemat-iccs and Computer Science. 1 (2), pp. 22-30, (2011).

[10] Khan, V. A., Ebadullah, K and Ahmad, A. I-Pre-Cauchy Sequences and Orlicz Function. Journal of Mathematical Analysis. 3 (1), pp. 21-26, (2012).

[11] Khan, V.A. and Ebadullah,K.I-Convergent difference sequence spaces defined by a sequence of moduli. J. Math. Comput.Sci. 2 (2), pp. 265273, (2012).

[12] Kostyrko, P., Salát, T.,Wilczynski,W.I-convergence. Real Analysis Exchange, 26 (2), pp. 669-686, (2000).

[13] Malkowsky, E. Recent results in the theory of matrix transformation in sequence spaces. Math. Vesnik. (49), pp. 187-196, (1997).

[14] Ng, P., N. and Lee P., Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Pracc. Math. 20 (2), pp. 429-433, (1978).

[15] Salat,T., Tripathy, B. C., Ziman, M. On some properties of I-convergence. Tatra Mt. Math. Publ., (28), pp. 279-286, (2004).

[16] Salát,T., Tripathy,B. C.,Ziman,M. On I-convergence field. Ital. J. Pure Appl. Math., (17), pp. 45-54 (2005).

[17] choenberg, I. J. : The integrability of certain functions and related summability methods, Amer. Math. Monthly. 66 : pp. 361-375, (1959).

[18] §engõnül, M. On The Zweier Sequence Space, DEMONSTRATIO MATHEMATICA, Vol.XL No.(1), pp. 181-196, (2007).

[19] Tripathy, B. C. and Hazarika, B. Paranorm I-Convergent sequence spaces, Math Slovaca. 59 (4), pp. 485-494. (2009).

[20] Tripathy, B. C. and Hazarika,B. Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica. 27(1), pp 149-154, (2011).

[21] Tripathy, B. C. and Hazarika, B. I -convergent sequence spaces associated with multiplier sequence spaces ; Mathematical Inequalities and Applications ; 11 (3), pp. 543-548, (2008).

[22] Tripathy, B. C. and Mahanta, S. On Acceleration convergence of sequences ; Journal of the Franklin Institute, 347, pp. 591-598, (2010).

[23] Tripathy,B.C. and Hazarika, B. I-monotonic and I-Convergent sequences, Kyungpook Math. Journal. 51 (2) (2011), pp. 233-239, (2011).

[24] Tripathy, B.C.Sen, M.andNath, S. I-Convergence in probabilistic n-normed space ; Soft Comput, 16, pp. 1021-1027, (2012).

[25] Tripathy, B. C. Hazarika,B and Choudhry, B. Lacunary I-Convergent sequences, Kyungpook Math. Journal. 52 (4), pp. 473-482, (2012).

[26] Tripathy,B. C. and Sharma, B. On I-Convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal. 52 (2), pp. 189-200, (2012).

[27] Tripathy, B. C. and Ray, G. C. Mixed fuzzy ideal topological spaces ; Applied mathematics and Computaions; 220, pp. 602-607, (2013).


Vakeel A. Khan
Department of Mathematics, Aligarh Muslim University
Aligarh-202002,
India
e-mail: vakhanmaths@gmail.com

Khalid Ebadullah
Department of Applied Mathematics
Z. H. College of Engineering and Technology
Aligarh Muslim University
Aligarh-202002
India
e-mail: khalidebadullah@gmail.com

Yasmeen
Department of Mathematics, Aligarh Muslim University
Aligarh-202002
India
e-mail : khany9828@gmail.com

Received : February 2014. Accepted : April 2014