SciELO - Scientific Electronic Library Online

vol.32 issue3Asymptotics for Klein-Gordon equationOn the univalence of certain integral transform author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.32 no.3 Antofagasta Sept. 2013 

Proyecciones Journal of Mathematics
Vol. 32, No 3, pp. 267-280, September 2013.
Universidad Católica del Norte Antofagasta - Chile

On some seminormed sequence spaces defined by Orlicz function


M. Aiyub
University of Bahrain, India


The sequence space BVa was introduced and studied by Mursaleen [9]. In this paper we extend BVa to BVa (M, p, q,r) on a seminormed complex linear space by using orlicz function. We give various properties and some inclusion relations on this space.


[1] Z. U. Ahmad and M. Mursaleen, An application of banach limits, Proc. Amer. Math. Soc. 103, pp. 244-246, (1983).

[2] S. T. Chem, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).

[3] M.A.KrasnoselskiiandRutickii, Ya.B,ConvexFunctionsandOrlicz Spaces, (Gooningen: P.Nordhoff Ltd.) (1961)(translation)

[4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.Math., 10, pp. 379-390, (1971).

[5] G. G. Lorenz, A contribution to the theory of divergent sequences,Acta Math. 80, pp. 167-190, (1948).

[6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft), (1995).

[7] L. Maligranda, Orlicz Space and Interpolation, Seminar in Math.5 Campinas (1989).

[8] M. Mursaleen, Matrix Transformation Between some new sequence spaces, Houston J. Math., 9, pp. 505-509, (1983).

[9] M. Mursaleen, On some new invariant matrix methods of summabil-ity, Quart. J. Math., Oxford (2) 34, pp. 77-86, (1983).

[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (Springer-Verlag)(1983).

[11] W. Orlicz, XJber Raume (LM), Bulletin International del' Academie Polonaise de Sciences et des Letters, Serie A, pp. 93-107, (1936).

[12] R. A. Raimi, Invariant means and invariant matrix method of summa-bility, Duke Math. J., 30, pp. 81-94, (1963).

[13] M. M. Rao and Z.D.Ren, Theory of Orlicz spaces (New york, Basel, Hong Kong: Marcal Dekker Inc.) (1991)

[14] P. Schafer, Infinite matrices and invariant means Proc .Ammer. Math.Soc. 36, pp. 104-110, (1972).

[15] A. Wilansky, Summability through FunctionAlalysis,North-Holland Mathematical Studies, 85 (1984)

[16] K.Yosidak, Functional Analysis, Springer- Verlag, Berlian- Heidelberg Newyork., (1971)

M. Aiyub
Department of Mathematics, Jniversity of Bahrain,
P. O. Box-32038,
Kingdom of Bahrain
e-mail :

Received : September 2012. Accepted : May 2013

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License