SciELO - Scientific Electronic Library Online

 
vol.32 issue3Asymptotics for Klein-Gordon equationOn the univalence of certain integral transform author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.32 no.3 Antofagasta Sept. 2013

http://dx.doi.org/10.4067/S0716-09172013000300006 

Proyecciones Journal of Mathematics
Vol. 32, No 3, pp. 267-280, September 2013.
Universidad Católica del Norte Antofagasta - Chile

On some seminormed sequence spaces defined by Orlicz function

 

M. Aiyub
University of Bahrain, India


ABSTRACT

The sequence space BVa was introduced and studied by Mursaleen [9]. In this paper we extend BVa to BVa (M, p, q,r) on a seminormed complex linear space by using orlicz function. We give various properties and some inclusion relations on this space.


REFERENCES

[1] Z. U. Ahmad and M. Mursaleen, An application of banach limits, Proc. Amer. Math. Soc. 103, pp. 244-246, (1983).

[2] S. T. Chem, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).

[3] M.A.KrasnoselskiiandRutickii, Ya.B,ConvexFunctionsandOrlicz Spaces, (Gooningen: P.Nordhoff Ltd.) (1961)(translation)

[4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.Math., 10, pp. 379-390, (1971).

[5] G. G. Lorenz, A contribution to the theory of divergent sequences,Acta Math. 80, pp. 167-190, (1948).

[6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft), (1995).

[7] L. Maligranda, Orlicz Space and Interpolation, Seminar in Math.5 Campinas (1989).

[8] M. Mursaleen, Matrix Transformation Between some new sequence spaces, Houston J. Math., 9, pp. 505-509, (1983).

[9] M. Mursaleen, On some new invariant matrix methods of summabil-ity, Quart. J. Math., Oxford (2) 34, pp. 77-86, (1983).

[10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (Springer-Verlag)(1983).

[11] W. Orlicz, XJber Raume (LM), Bulletin International del' Academie Polonaise de Sciences et des Letters, Serie A, pp. 93-107, (1936).

[12] R. A. Raimi, Invariant means and invariant matrix method of summa-bility, Duke Math. J., 30, pp. 81-94, (1963).

[13] M. M. Rao and Z.D.Ren, Theory of Orlicz spaces (New york, Basel, Hong Kong: Marcal Dekker Inc.) (1991)

[14] P. Schafer, Infinite matrices and invariant means Proc .Ammer. Math.Soc. 36, pp. 104-110, (1972).

[15] A. Wilansky, Summability through FunctionAlalysis,North-Holland Mathematical Studies, 85 (1984)

[16] K.Yosidak, Functional Analysis, Springer- Verlag, Berlian- Heidelberg Newyork., (1971)

M. Aiyub
Department of Mathematics, Jniversity of Bahrain,
P. O. Box-32038,
Kingdom of Bahrain
e-mail : maiyub2002@gmail.com

Received : September 2012. Accepted : May 2013

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License