Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.32 no.2 Antofagasta mayo 2013
http://dx.doi.org/10.4067/S0716-09172013000200003
Proyecciones Journal of Mathematics Vol. 32, No 2, pp. 119-142, June 2013. Universidad Católica del Norte Antofagasta - Chile
The Nemytskii operator on bounded ö-variation in the mean spaces
René Erlin Castillo
Universidad Nacional de Colombia, Colombia
Nelson Merentes
Universidad Central de Venezuela, Venezuela
Eduard Trousselot
Universidad de Oriente,
Venezuela
ABSTRACT
We introduce the notion of bounded Ö-variation in the sense of LÖ-norm. We obtain a Riesz type result for functions of bounded Ö-variation in the mean. We also show that if the Nemytskii operator act on the bounded Ö-variation in the mean spaces into itself and satisfy some Lipschitz condition there exist two functions g and h belonging to the bounded Ö-variation in the mean space such that
f (t,y) = g(t)y + h(t),t ∈ [0, 2ð],
y ∈ R.
2000 Mathematics Subject Classification : Primary 26A45, 26B30; Secundary: 26A16, 26A24.
Key Words : (p, á)-variation, Nemytskii operator.
REFERENCES
[1] Castillo R., The Nemytskii operator on bounded p-variation in the mean spaces, Matemticas: Enseanza Universitaria Vol XIX, N 1, pp. 31-41, (2011). [ Links ]
[2] Castillo, R., and Trousselot, E., On functions of (p, á )-bounded variation. Real Anal. Exchange, 34, n. 1 , pp. 49-60, (2009). [ Links ]
[3] Jordan, C., Sur la Serie de Fourier, C. R. Math. acad. Sci. Paris, 2, pp. 228-230, (1881). [ Links ]
[4] Maligranda, L. and Orlicz, W., On some properties of Functions of Generalize Variation, Monatshif fr Mathematik (springe Verlag), 104, pp. 53-65, (1987). [ Links ]
[5] Merentes, N., Functions of bounded (Ö, 2) Variation Annals Univ Sci Budapest, XXXIV, pp. 145-154, (1991). [ Links ]
[6] Merentes, N., On Functions of bounded (p, 2)-variation. Collect Math, 43, 2, pp. 115-118, (1992). [ Links ]
[7] Merentes, N. y Rivas, S., El Operador de composicin con algn tipo de variacin acotada, IX Escuela de Matematica, AMV, IVIC, (1996). [ Links ]
[8] Medved'ev, Y., A generalization of certain Theorem of Riesz, Uspekhi. Mat. Nauk, 6, pp. 115-118, (1953). [ Links ]
[9] Mricz, F. and Siddiqi, A. H., A quatified version of the Dirichlet-Jordan test in L1-norm, Rend. Circ. Mat. Palermo, 45, pp. 19-24, (1996). [ Links ]
[10] Neves, M. T., Ö-variacin en el sentido de wiener y Riesz, Trabajo de pasanta (asesorado por S. Rivas) UNA Centro local Aragua, rea de Matemtica, Maracay, (1994). [ Links ]
[11] Riesz, F., Untersuchungen ber system intergrierbarer function, Math-ematische Annalen, 69, pp. 1449-1497, (1910). [ Links ]
[12] Schramm, M., Functions of Ö-Bounded variation and Riemann-Stieltjes Integration. Trans of the Amer Math. Soc., 287, 1, pp. 46-63, (1985). [ Links ]
[13] Waterman, D., On Ë-Bounded Variation, Studia Mathematicae, LVII,pp. 33-45, (1976) [ Links ]
Rene Erlin Castillo
Departamento de Matemáticas, Universidad Nacional de Colombia,
Ciudad Universitaria: Carrera 30, Calle 45, Bogotáa, Colombia
e-mail : recastillo@unal.edu.co
Nelson Merentes
Departamento de Matemáaticas, Universidad Central de Venezuela Caracas,
Venezuela
e-mail : nmerucv@gmail.com
Eduard Trousselot
Departamento de Matemaáticas, Universidad de Oriente
6101 Cumanáa, Edo. Sucre, Venezuela
e-mail : eddycharles2007@hotmail.com
Received : November 2011. Accepted : April 2013